
Chapter 2 Supplemental Text Material 
 

S2-1. Models for the Data and the t-Test 
 
The model presented in the text, equation (2-23) is more properly called a means model.  
Since the mean is a location parameter, this type of model is also sometimes called a 
location model.  There are other ways to write the model for a t-test.  One possibility is  
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where µ is a parameter that is common to all observed responses (an overall mean) and τi

is a parameter that is unique to the ith factor level.  Sometimes we call τi the ith treatment 
effect.  This model is usually called the effects model. 

Since the means model is  
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we see that the ith treatment or factor level mean is µ µ τi i= + ; that is, the mean 
response at factor level i is equal to an overall mean plus the effect of the ith factor.  We 
will use both types of models to represent data from designed experiments.  Most of the 
time we will work with effects models, because it’s the “traditional” way to present much 
of this material.  However, there are situations where the means model is useful, and even 
more natural. 

S2-2. Estimating the Model Parameters 
Because models arise naturally in examining data from designed experiments, we 
frequently need to estimate the model parameters.  We often use the method of least 
squares for parameter estimation.  This procedure chooses values for the model 
parameters that minimize the sum of the squares of the errors εij.  We will illustrate this 
procedure for the means model.  For simplicity, assume that the sample sizes for the two 
factor levels are equal; that is n n n1 2= = .  The least squares function that must be 
minimized is  
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to zero yields the least squares normal equations  
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The solution to these equations gives the least squares estimators of the factor level 
means. The solution is µ µ1 1 2= 2=y  and y ; that is, the sample averages at leach factor 
level are the estimators of the factor level means.   

This result should be intuitive, as we learn early on in basic statistics courses that the 
sample average usually provides a reasonable estimate of the population mean.  However, 
as we have just seen, this result can be derived easily from a simple location model using 
least squares.  It also turns out that if we assume that the model errors are normally and 
independently distributed, the sample averages are the maximum likelihood estimators 
of the factor level means.  That is, if the observations are normally distributed, least 
squares and maximum likelihood produce exactly the same estimators of the factor level 
means.   Maximum likelihood is a more general method of parameter estimation that 
usually produces parameter estimates that have excellent statistical properties. 

We can also apply the method of least squares to the effects model.  Assuming equal 
sample sizes, the least squares function is  

L

y

ij
j

n

i

ij i
j

n

i

=

= − −

==

==

∑∑

∑∑

ε

µ τ

2

11

2

2

11

2

( )
 

and the partial derivatives of L with respect to the parameters are  
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Equating these partial derivatives to zero results in the following least squares normal 
equations: 

2 1 2
11

2

1 1
1

2 2
1

n n n y

n n y

n n y

ij
j

n

i

j
j

n

j
j

n

µ τ τ

µ τ

µ τ

+ + =

+ =

+ =

==

=

=

∑∑

∑

∑

         

        

 

Notice that if we add the last two of these normal equations we obtain the first one.  That 
is, the normal equations are not linearly independent and so they do not have a unique 
solution.  This has occurred because the effects model is overparameterized.  This 



situation occurs frequently; that is, the effects model for an experiment will always be an 
overparameterized model.   

One way to deal with this problem is to add another linearly independent equation to the 
normal equations.  The most common way to do this is to use the equation τ τ1 2 0+ = .  
This is, in a sense, an intuitive choice as it essentially defines the factor effects as 
deviations from the overall mean µ.  If we impose this constraint, the solution to the 
normal equations is  
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That is, the overall mean is estimated by the average of all 2n sample observation, while 
each individual factor effect is estimated by the difference between the sample average 
for that factor level and the average of all observations. 

This is not the only possible choice for a linearly independent “constraint” for solving the 
normal equations.  Another possibility is to simply set the overall mean equal to a 
constant, such as for example µ = 0.  This results in the solution  
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Yet another possibility is τ 2 0= , producing the solution  
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There are an infinite number of possible constraints that could be used to solve the 
normal equations.  An obvious question is “which solution should we use?”  It turns out 
that it really doesn’t matter. For each of the three solutions above (indeed for any solution 
to the normal equations) we have  

, ,µ µ τi i iy i= + = = 1 2  

That is, the least squares estimator of the mean of the ith factor level will always be the 
sample average of the observations at that factor level.  So even if we cannot obtain 
unique estimates for the parameters in the effects model we can obtain unique estimators 
of a function of these parameters that we are interested in.  We say that the mean of the 
ith factor level is estimable.  Any function of the model parameters that can be uniquely 
estimated regardless of the constraint selected to solve the normal equations is called an 
estimable function.  This is discussed in more detail in Chapter 3.   

S2-3. A Regression Model Approach to the t-Test 
The two-sample t-test can be presented from the viewpoint of a simple linear regression 
model.  This is a very instructive way to think about the t-test, as it fits in nicely with the 
general notion of a factorial experiment with factors at two levels, such as the golf 



experiment described in Chapter 1.  This type of experiment is very important in practice, 
and is discussed extensively in subsequent chapters. 

In the t-test scenario, we have a factor x with two levels, which we can arbitrarily call 
“low” and “high”.  We will use x = -1 to denote the low level of this factor and x = +1 to 
denote the high level of this factor.  Figure 2-3.1 below is a scatter plot (from Minitab) of 
the portland cement mortar tension bond strength data in Table 2-1 of Chapter 2. 
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Figure 2-3.1 Scatter plot of bond strength

 
 

We will a simple linear regression model to this data, say  

y xij ij ij= + +β β ε0 1  

whereβ β0 and 1 are the intercept and slope, respectively, of the regression line and the 
regressor or predictor variable is x j1 1= − and x j2 1= + .  The method of least squares can 
be used to estimate the slope and intercept in this model.  Assuming that we have equal 
sample sizes n for each factor level the least squares normal equations are: 
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The solution to these equations is  
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Note that the least squares estimator of the intercept is the average of all the observations 
from both samples, while the estimator of the slope is one-half of the difference between 
the sample averages at the “high” and “low’ levels of the factor x.  Below is the output 
from the linear regression procedure in Minitab for the tension bond strength data. 
 
Regression Analysis: Bond Strength versus Factor level  
 
The regression equation is 
Bond Strength = 16.9 + 0.139 Factor level 
 
 
Predictor        Coef  SE Coef       T      P 
Constant      16.9030   0.0636  265.93  0.000 
Factor level  0.13900  0.06356    2.19  0.042 
 
 
S = 0.284253   R-Sq = 21.0%   R-Sq(adj) = 16.6% 
 
 
Analysis of Variance 
 
Source          DF       SS       MS     F      P 
Regression       1  0.38642  0.38642  4.78  0.042 
Residual Error  18  1.45440  0.08080 
Total           19  1.84082 
 

 
 
Notice that the estimate of the slope (given in the column labeled “Coef” and the row 

labeled “Factor level” above) is 0.139 2 1
1 1( ) (17.0420 16.7640)
2 2

y y= − = − and the 

estimate of the intercept is 16.9030.   Furthermore, notice that the t-statistic associated 
with the slope is equal to 2.19, exactly the same value (apart from sign) that we gave in 
the Minitab two-sample t-test output in Table 2-2 in the text.  Now in simple linear 
regression, the t-test on the slope is actually testing the hypotheses 
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and this is equivalent to testing H0 1 2:µ µ= . 

It is easy to show that the t-test statistic used for testing that the slope equals zero in 
simple linear regression is identical to the usual two-sample t-test.  Recall that to test the 
above hypotheses in simple linear regression the t-statistic is  
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This is the usual two-sample t-test statistic for the case of equal sample sizes. 

 

S2-4. Constructing Normal Probability Plots 
While we usually generate normal probability plots using a computer software program, 
occasionally we have to construct them by hand.  Fortunately, it’s relatively easy to do, 
since specialized normal probability plotting paper is widely available.  This is just 
graph paper with the vertical (or probability) scale arranged so that if we plot the 
cumulative normal probabilities (j – 0.5)/n on that scale versus the rank-ordered 
observations y(j) a graph equivalent to the computer-generated normal probability plot 
will result.  The table below shows the calculations for the unmodified portland cement 
mortar bond strength data. 

j y (j) (j – 0.5)/10 z(j)

1 16.62 0.05 -1.64 

2 16.75 0.15 -1.04 

3 16.87 0.25 -0.67 

4 16.98 0.35 -0.39 

5 17.02 0.45 -0.13 

6 17.08 0.55 0.13 

7 17.12 0.65 0.39 

8 17.27 0.75 0.67 

9 17.34 0.85 1.04 

10 17.37 0.95 1.64 

 



Now if we plot the cumulative probabilities from the next-to-last column of this table 
versus the rank-ordered observations from the second column on normal probability 
paper, we will produce a graph that is identical to the results for the  unmodified mortar 
formulation that is shown in Figure 2-11 in the text. 

A normal probability plot can also be constructed on ordinary graph paper by plotting the 
standardized normal z-scores z(j) against the ranked observations, where the standardized 
normal z-scores are obtained from 
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where  denotes the standard normal cumulative distribution.  For example, if (j – 
0.5)/n = 0.05, then 

Φ( )•
Φ( ) . .z j = z j = −0 05 164 implies that .  The last column of the above 

table displays the values of the normal z-scores.  Plotting these values against the ranked 
observations on ordinary graph paper will produce a normal probability plot equivalent to 
the unmodified mortar results in Figure 2-11.  As noted in the text, many statistics 
computer packages present the normal probability plot this way. 

 

 

S2-5. More About Checking Assumptions in the t-Test 
We noted in the text that a normal probability plot of the observations was an excellent 
way to check the normality assumption in the t-test. Instead of plotting the observations, 
an alternative is to plot the residuals from the statistical model.   

Recall that the means model is  
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and that the estimates of the parameters (the factor level means) in this model are the 
sample averages.  Therefore, we could say that the fitted model is  

, , , , ,y y i j nij i i= = =1 2 1 2 and  

That is, an estimate of the ijth observation is just the average of the observations in the ith 
factor level.  The difference between the observed value of the response and the predicted 
(or fitted) value is called a residual, say 

e y y iij ij i= − =, ,1 2 . 

The table below computes the values of the residuals from the portland cement mortar 
tension bond strength data. 
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1 16.85 0.09 16.62 -0.42 

2 16.40 -0.36 16.75 -0.29 

3 17.21 0.45 17.37 0.33 

4 16.35 -0.41 17.12 0.08 

5 16.52 -0.24 16.98 -0.06 

6 17.04 0.28 16.87 -0.17 

7 16.96 0.20 17.34 0.30 

8 17.15 0.39 17.02 -0.02 

9 16.59 -0.17 17.08 0.04 

10 16.57 -0.19 17.27 0.23 

 

The figure below is a normal probability plot of these residuals from Minitab. 
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As noted in section 2-3 above we can compute the t-test statistic using a simple linear 
regression model approach.  Most regression software packages will also compute a table 
or listing of the residuals from the model.  The residuals from the Minitab regression 
model fit obtained previously are as follows: 
 
 
     Factor      Bond 
Obs   level  Strength      Fit  SE Fit  Residual  St Resid 
  1   -1.00   16.8500  16.7640  0.0899    0.0860      0.32 
  2   -1.00   16.4000  16.7640  0.0899   -0.3640     -1.35 
  3   -1.00   17.2100  16.7640  0.0899    0.4460      1.65 
  4   -1.00   16.3500  16.7640  0.0899   -0.4140     -1.54 
  5   -1.00   16.5200  16.7640  0.0899   -0.2440     -0.90 
  6   -1.00   17.0400  16.7640  0.0899    0.2760      1.02 
  7   -1.00   16.9600  16.7640  0.0899    0.1960      0.73 
  8   -1.00   17.1500  16.7640  0.0899    0.3860      1.43 
  9   -1.00   16.5900  16.7640  0.0899   -0.1740     -0.65 
 10   -1.00   16.5700  16.7640  0.0899   -0.1940     -0.72 
 11    1.00   16.6200  17.0420  0.0899   -0.4220     -1.56 
 12    1.00   16.7500  17.0420  0.0899   -0.2920     -1.08 
 13    1.00   17.3700  17.0420  0.0899    0.3280      1.22 
 14    1.00   17.1200  17.0420  0.0899    0.0780      0.29 
 15    1.00   16.9800  17.0420  0.0899   -0.0620     -0.23 
 16    1.00   16.8700  17.0420  0.0899   -0.1720     -0.64 
 17    1.00   17.3400  17.0420  0.0899    0.2980      1.11 
 18    1.00   17.0200  17.0420  0.0899   -0.0220     -0.08 
 19    1.00   17.0800  17.0420  0.0899    0.0380      0.14 
 20    1.00   17.2700  17.0420  0.0899    0.2280      0.85 
 

 
The column labeled “Fit” contains the averages of the two samples, computed to four 
decimal places.  The residuals in the sixth column of this table are the same (apart from 
rounding) as we computed manually.   
 
 
S2-6. Some More Information about the Paired t-Test 
The paired t-test examines the difference between two variables and test whether the 
mean of those differences differs from zero.  In the text we show that the mean of the 
differences µ d is identical to the difference of the means in two independent samples, 
µ µ1 − 2 .  However the variance of the differences is not the same as would be observed if 
there were two independent samples.  Let d be the sample average of the differences.  
Then 
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assuming that both populations have the same variance σ2 and that ρ is the correlation 
between the two random variables .  The quantity estimates the variance 
of the average difference

y1 and S nd
2 /

d .  In many paired experiments a strong positive correlation is 



expected to exist between because both factor levels have been applied to the 
same experimental unit.  When there is positive correlation within the pairs, the 
denominator for the paired t-test will be smaller than the denominator for the two-sample 
or independent t-test.  If the two-sample test is applied incorrectly to paired samples, the 
procedure will generally understate the significance of the data. 

y1 and y2

Note also that while for convenience we have assumed that both populations have the 
same variance, the assumption is really unnecessary.  The paired t-test is valid when the 
variances of the two populations are different. 


	Notice that the estimate of the slope (given in the column l

