
Chapter 2 

Fundamentals of Solar Radiation 
 

2.1  

a.  

Begin with Equation (2.3), neglecting refractive effects. 

𝐸𝑏𝜆 =
𝐶1

(𝑒
𝐶2
𝜆𝑇 − 1) 𝜆5

  

Take 𝐸𝑏𝜆𝑑𝜆 (with 𝜈 = 1/𝜆). Hence: 

𝐸𝑏𝜆𝑑𝜆 =
𝐶1𝜈5𝑑𝜆

(𝑒
𝐶2𝜈̃

𝑇 − 1)

= −
𝐶1𝜈̃3𝑑𝜈

(𝑒
𝐶2𝜈̃

𝑇 − 1)

= −𝐸𝑏𝜈̃𝑑𝜈 

∴  𝐸𝑏𝜈̃ =
𝐶1𝜈3

(𝑒
𝐶2𝜈̃

𝑇 − 1)

 

b.  

Differentiate the expression from part (a) with respect to 

wave number. Then, set the expression equal to zero. 

The resulting equation is: 

3(𝑒
C2𝜈̃

𝑇 − 1) =
C2𝑒

C2𝜈̃
𝑇 𝜈

𝑇
 

This equation is transcendental in 𝜈/𝑇. Solving 

numerically, we have: 
𝜈

𝑇
= 1.96 cm−1/K  

 
2.2  
 

From the problem statement, 𝐿 = 40.77°, solar time is 

2:00PM, on October 1
st
 (n = 274). The declination angle, 

𝛿𝑠, is obtained from Equation (2.23). 

𝛿𝑠 = 23.45° sin [
360(284 + 𝑛)°

365
]

= −4.22° (−0.0736 rad)  
To calculate the altitude angle, we need the hour angle, 

obtained from Equation (2.25). 

ℎ𝑠 =
15°

hr
(hours from solar noon) = 30° 

The altitude angle is obtained from Equation (2.28). 

sin 𝛼 = sin 𝐿 sin 𝛿𝑠 + cos 𝐿 cos 𝛿𝑠 cos ℎ𝑠 

𝛼 = 37.3° (0.651 rad) 

And the zenith angle immediately follows, according to 

Equation (2.24). 

𝑧 = 90° − 𝛼 = 52.7° (0.920 rad) 
For this time / location, the sun will be south of the east-

west line, so |𝑎𝑠| ≤ 90°. Hence, the azimuth angle 

follows directly from Equation (2.29). 

sin 𝑎𝑠 =
cos 𝛿𝑠 sin ℎ𝑠

cos 𝛼
 

𝑎𝑠 =  38.8° (0.678 rad) 

 
 

2.3  

 

(1) First, find the minimum normalized distance, 𝑑, for 

placement of the second collector. At solar noon, the 

profile angle is equal to the solar altitude angle, 𝛼1.  

From the geometry, we have the following relationships. 

tan 𝛼1 =
ℎ

𝑑
 

sin 𝛽 =
ℎ

𝑤
 

Here, ℎ is the vertical height of the collector, and 𝑤 is 

the arbitrary width. The normalized distance, 𝑑/𝑤, is 

desired. 
𝑑

𝑤
=

sin 𝛽

tan 𝛼1
 

The collector tilt angle, 𝛽, is known. The altitude angle 

follows from Equation (2.28). For Tampa, Florida, we 

have 𝐿 =  27.96°N (Tampa International Airport); for 

December 21
st
, 𝛿𝑠 =  −23.45°. 

sin 𝛼1 = sin 𝐿 sin 𝛿𝑠 + cos 𝐿 cos 𝛿𝑠 cos ℎ𝑠 

𝛼1 = 38.6° (0.673 rad) 
Normalized distance: 

𝑑

𝑤
=

sin 𝛽

tan 𝛼1

= 0.627 (meter separation per meter width) 
(2) Second, the percent shading at 9:00AM solar time is 

desired; this quantity would be the width shaded divided 

by the total collector width. 

% shading =
𝑤𝑠

𝑤
 

In this case, the sun is not due south, so the profile angle, 

𝛾2, is needed, and it can be obtained from Equation 2.31. 

First, we need the new altitude angle (ℎ𝑠 =  −45°). 
sin 𝛼2 = sin 𝐿 sin 𝛿𝑠 + cos 𝐿 cos 𝛿𝑠 cos ℎ𝑠 

𝛼2 = 22.7° (0.397 rad) 
Next, the solar azimuth angle: 

sin 𝑎𝑠 =
cos 𝛿𝑠 sin ℎ𝑠

cos 𝛼2
 

𝑎𝑠 =  −44.7° (−0.780 rad) 
Finally, the profile angle is obtained. 

tan 𝛾2 = sec 𝑎𝑠 tan 𝛼 

𝛾2 = 30.5° (0.532 rad) 
From the geometry and the law of sines, we arrive at the 

following relation. 
sin(𝛽 + 𝛾2)

ℎ/ sin 𝛼1
=

sin(𝛼1 − 𝛾2)

𝑤𝑠
 

Simplifying: 
𝑤𝑠

𝑤
=

sin(𝛼1 − 𝛾2)

sin(𝛽 + 𝛾2)

sin 𝛽

sin 𝛼1

= 0.129; i. e. , 12.9% of the collector is shaded. 

  



2.4  
 

The location is not specified; the date (September 1
st
) 

gives 𝑛 = 244. The declination angle is obtained from 

Equation (2.23). 

𝛿𝑠 = 7.72° (0.135 rad) 

The sunrise / sunset times are obtained from Equation 

(2.30). 

ℎ𝑠𝑠, ℎ𝑠𝑟 =  ± cos−1(− tan 𝐿 tan 𝛿𝑠) 

Solar sunrise and sunset times are found as follows [see 

Equation (2.25)]. 

Solar sunrise time = 12: 00PM + ℎ𝑠𝑟 (
4 min

°
) 

Solar sunset time = 12: 00PM + ℎ𝑠𝑠 (
4 min

°
) 

To convert to local time, Equation (2.26) is needed. 

𝐿𝑆𝑇 = Solar time − 𝐸𝑇 − (𝑙𝑠𝑡 − 𝑙𝑙𝑜𝑐𝑎𝑙) (
4 min

°
) 

Here, the equation of time, 𝐸𝑇, is computed with 

Equation (2.27): 

𝐸𝑇 (in minutes)
= 9.87 sin 2𝐵 − 7.53 cos 𝐵 − 1.5 sin 𝐵 

𝐵 =
360(𝑛 − 81)°

364
 

For this date, September 1
st
, 𝐸𝑇 is determined as 

follows. 

𝐵 = 161.2° 
𝐸𝑇 = 0.626 min 

Given the above information and the latitude of the 

specific location, sunrise / sunset times can be 

determined with Equations (2.30), (2.25), and (2.26). 

 
2.5  

 

The day numbers are set by the month (e.g., for January 

15
th
, 𝑛 = 15); from the characteristic 𝑛 for each month, 

a declination angle is obtained from Equation (2.23). 

The sunrise and sunset times are computed as in 

Problem 2.4. Given ℎ𝑠𝑠 and ℎ𝑠𝑟, the bounds of the day in 

solar time are known. Data for hours in between these 

bounds are computed by first determining the hour angle 

[Equation (2.25)], then the altitude angle [Equation 

(2.28), with latitude angle, 𝐿, set by the location], and 

finally the zenith and azimuth angles [Equations (2.24) 

and (2.29), respectively]. If desired, the solar time for 

sunrise / sunset can be converted to local time using the 

procedure outlined in Problem 2.4. 

 
2.6  

 

The unit directional for the sun can be written in terms 

of an East-North-Vertical coordinate system. 

𝑠̂ = cos 𝛼 sin 𝑎𝑠 𝐸̂ + cos 𝛼 cos 𝑎𝑠 𝑁̂ − sin 𝛼 𝑉̂ 
Similarly for the panel normal, 

𝑝̂ = cos(90 − 𝛽) sin(−𝑎𝑤) 𝐸̂
− cos(90 − 𝛽) cos(−𝑎𝑤) 𝑁̂
+ sin(90 − 𝛽) 𝑉̂ 

The scalar product of the two is 

cos 𝑖 = −𝑠̂ ∙ 𝑝̂ = cos 𝛼 sin 𝑎𝑠 sin 𝛽 sin 𝑎𝑤

+ cos 𝛼 cos 𝑎𝑠 sin 𝛽 cos 𝑎𝑤

+ sin 𝛼 cos 𝛽 
Combining terms and using a trigonometric identity: 

cos 𝑖 = cos 𝛼 sin 𝛽 cos(𝑎𝑠 − 𝑎𝑤) + sin 𝛼 cos 𝛽 

 
2.7  

 

In the case of the tubular surface, the incidence angle is 

found as the angle between the sun’s rays and a plane 

perpendicular to the cylinder’s long axis. This is 

equivalent to modeling the incidence angle on a flat plate 

collector rotating about a titled axis. Using a procedure 

similar to that used in Problem 2.6: 

cos 𝑖

= √1 − {cos(𝛼 + 𝛽) − cos 𝛼 cos 𝛽 [1 − cos(𝑎𝑠 − 𝑎𝑤)]}2 

In the case of a titled axis in the north-south plane, 

cos 𝑖 = √1 − [cos(𝛼 + 𝛽) − cos 𝛼 cos 𝛽 (1 − cos 𝑎𝑠)]2 

Applying a trigonometric identity, we arrive at the 

following equation. 

cos 𝑖 = (1 − [cos 𝛼 sin 𝛽 − sin 𝛼 cos 𝛽
− cos 𝛼 cos 𝛽 (1 − cos 𝑎𝑠)]2)0.5 

From Figures 2.8 and 2.9: 

cos 𝛼 cos 𝑎𝑠 = cos 𝛿𝑠 sin 𝐿 cos ℎ𝑠 − sin 𝛿𝑠 cos 𝐿 
Using this expression in conjunction with Equation 

(2.28), and further applying a trigonometric identity, we 

arrive at the desired equation.  

cos 𝑖

= √1 − [sin(𝛽 − 𝐿) cos 𝛿𝑠 cos ℎ𝑠 + cos(𝛽 − 𝐿) sin 𝛿𝑠]2 

 
2.8  

 

On September 21
st
, the declination angle, 𝛿𝑠, is zero 

(autumnal equinox). For solar noon, both the hour angle, 

ℎ𝑠, and the solar azimuth angle, 𝑎𝑠, are zero. From 

Equation (2.28): 

𝛼 = 90 − 𝐿 

For Tampa, Florida, 𝐿 =  27.96°N; hence, 𝛼 =
62.0° (1.08 rad). 

The zenith angle follows immediately [Equation (2.24)]. 

𝑧 = 90 − 𝛼 = 28.0° (0.488 rad) 

From Equation (2.48), the incidence angle is calculated 

(𝛽 = 30°). 

cos 𝑖 = cos 𝛼 sin 𝛽 + sin 𝛼 cos 𝛽 

𝑖 = 2.04° (0.0356 rad) 

From the 2009 ASHRAE Handbook for Tampa 

International Airport [either taken directly or calculated 

according to Equations (2.43) and (2.44)]: 

𝐼𝑏,𝑁 = 836
𝑊

𝑚2
 



𝐼𝑑,ℎ = 143
𝑊

𝑚2
 

The beam radiation on the tilted surface is found as 

follows. 

𝐼𝑏,𝑐 = 𝐼𝑏,𝑁 cos 𝑖 = 835
𝑊

𝑚2
 

The diffuse radiation on the tilted surface is then 

calculated. 

𝐼𝑑,𝑐 = 𝐼𝑑,ℎ cos2
𝛽

2
= 133

𝑊

𝑚2
 

Finally, the reflected radiation incident on the surface is 

calculated, using Equation (2.51) (assume a ground 

reflectance, 𝜌, of 0.2). 

𝐼𝑟,𝑐 = 𝜌(𝐼𝑏,𝑁 sin 𝛼 + 𝐼𝑑,ℎ) sin2
𝛽

2
= 11.8

𝑊

𝑚2
 

Summing: 

𝐼𝑐 = 981
𝑊

𝑚2
 

From Equation (2.27): 

𝐸𝑇 = 7.90 min 

The local standard time would therefore be 𝐿𝑆𝑇 =
12: 21PM [Equation (2.26)]. Accounting for daylight 

savings (in effect in Tampa on this date), local daylight 

time would be 𝐿𝐷𝑇 = 1: 21𝑃𝑀. 

 
2.9  

 

Horizontal extraterrestrial radiation is given as 

𝐼ℎ = 𝐼 sin 𝛼 
The average value of this over one hour is 

𝐼𝑜,ℎ =
∫ 𝐼 sin 𝛼 𝑑𝑡

𝑡+0.5hr

𝑡−0.5hr

(𝑡 + 0.5hr) − (𝑡 − 0.5hr)
 

or in terms of hour angles (rad), 

𝐼𝑜,ℎ =
12

𝜋
∫ 𝐼 sin 𝛼 𝑑ℎ𝑠

ℎ𝑠+𝜋/24

ℎ𝑠−𝜋/24

 

I is approximated as constant for the day number 

according to Eq. (2.35), and so can be taken out of the 

integral. From Eq. (2.28) for the solar altitude, 

sin 𝛼 = sin 𝐿 sin 𝛿𝑠 + cos 𝐿 cos 𝛿𝑠 cos ℎ𝑠 
where the latitude is constant for the location and the 

solar declination is approximated as constant for the day 

number. Therefore the integral becomes 

𝐼𝑜,ℎ =
12

𝜋
𝐼 (sin 𝐿 sin 𝛿𝑠 ∫ 𝑑ℎ𝑠

ℎ𝑠+𝜋/24

ℎ𝑠−𝜋/24

+ cos 𝐿 cos 𝛿𝑠 ∫ cos ℎ𝑠 𝑑ℎ𝑠

ℎ𝑠+𝜋/24

ℎ𝑠−𝜋/24

) 

 

Solving the integral, 

𝐼𝑜,ℎ = 𝐼(sin 𝐿 sin 𝛿𝑠 + 0.9971 cos 𝐿 cos 𝛿𝑠 cos ℎ𝑠)

≈ 𝐼 sin 𝛼 

The last equality holds to within less than one percent, 

depending on the magnitude of sin 𝐿 sin 𝛿𝑠. 

 
2.10  

 

Sun-path diagrams for the two latitudes are found in 

Appendix 2. For geometry (a), point C will be shaded 

when the altitude is given according to Eq. (2.31) as 

tan 50° = sec 𝑎𝑠 tan 𝛼. For the limiting case of the sun 

at 40º east or west of south, the altitude angle is then 

37.45º. For a noon sun, the altitude angle is 50º. The 

shadow map is plotted on the sun-path diagram for the 

35º location. As shown, point C is shaded when the solar 

declination is greater than -5º, which occurs between 

early March and early October. For other times of the 

year, the map shows, for example, shading on winter 

solstice before 8:15 AM and after 3:45 PM solar time. 

 
Shadow map for geometry (a), 35ºN latitude. 

For geometry (b), point C will be shaded at noon with 

the altitude angle greater than 45º. With the solar 

azimuth ± 60º of south, the corner of the overhang is in 

line with the sun and point C. The altitude angle of 

interest here is 26.57º, from looking at the geometry. 

Finally at ± 90º of south, the critical altitude angle is 30º. 



 
Shadow map for geometry (b), 35ºN latitude. 

For geometry (b), it is noted that during April, for 

example, point C is shaded in the morning before the sun 

reaches due east, then is in sunshine for about an hour 

until the overhang blocks the sun. The sun reappears on 

point C when it dips below the overhang in the 

afternoon, but disappears as it moves north of due west 

and behind the back wall. Point C is not shaded during 

the winter at all. 

 
Shadow map for geometry (c), 35ºN latitude. 

For geometry (c), point C will not be shaded after the 

sun rises to within 30º of south, provided it remains 

south of west in the late afternoon also. The critical 

altitude angle right before -30º azimuth is 

26.57º. At due east, shading will occur below 45º. 

Shadow maps for the 40º latitude are similar and are not 

shown. 

 
2.11  

 

There will be no sunlight on point P until the solar noon. 

Then the altitude angle must be above 45º. At 

60º west of south, the altitude angle of interest is 26.57º. 

Moving further west, the sun will shine on P provided it 

does not yet set. From the geometry, it will shine on P 

until it reaches due north. Note that the shadow map 

shown below is simply a rotation of the shadow map for 

Problem 2.10 (c), with point P in shadow in the morning. 

 

 
2.12  

 

The solar declinations are found with n = 172 and n 

= 355, respectively. Assuming solar time, the hour 

angles are found from Eq. (2.25). The solar altitude 

angles are found from Eq. (2.28). The solar azimuth 

angles are found from Eq. (2.29). For the south-facing 

collector, 𝑎𝑤 = 0. Plug all the above angles into Eq. 

(2.48). 

 Jun 21 

9 AM 

Jun 21 

noon 

Dec 21 

9 AM 

Dec 21 

noon 

Declination 23.45º 23.45º -23.45º -23.45º 

Hour angle -45º 0º -45º 0º 

Solar altitude 48.8º 73.4º 14.0º 26.6º 

Solar azimuth -80.2º 0º -41.9º 0º 

Panel azimuth 0º 0º 0º 0º 

Solar incidence 68.7º 53.4º 40.5º 6.6º 

 
  



2.13  

a.  

Determine the angles with the same procedure as in 

2.12, except 𝑎𝑤 = −45°. 
 Jun 21 

9 AM 

Jun 21 

noon 

Dec 21 

9 AM 

Dec 21 

noon 

Declination 23.45º 23.45º -23.45º -23.45º 

Hour angle -45º 0º -45º 0º 

Solar altitude 48.8º 73.4º 14.0º 26.6º 

Solar azimuth -80.2º 0º -41.9º 0º 

Panel azimuth -45º -45º -45º -45º 

Solar incidence 40.3º 58.9º 6.7º 41.6º 

 

b.  

The procedure is similar to that in 2.12, but with the 

orientation N-S the incidence angle is determined by the 

equation derived in Problem 2.7. 

cos 𝑖 = {1 − [sin(𝛽 − 𝐿) cos 𝛿𝑠 cos ℎ𝑠

+ cos(𝛽 − 𝐿) sin 𝛿𝑠]2}0.5 

 Jun 21 

9 AM 

Jun 21 

noon 

Dec 21 

9 AM 

Dec 21 

noon 

Declination 23.45º 23.45º -23.45º -23.45º 

Hour angle -45º 0º -45º 0º 

Solar altitude 48.8º 73.4º 14.0º 26.6º 

Solar azimuth -80.2º 0º -41.9º 0º 

Panel azimuth 0º 0º 0º 0º 

Solar incidence 42.0º 53.4º 1.2º 6.6º 

 
2.14  

 

For a one term Fourier cosine series, we want the 

declination to be of the form 

𝛿(𝑛) = 𝑎 cos (
𝜋

𝐿
𝑛 + 𝜑) =  𝑎 cos (

360

365
𝑛 + 𝜑) 

where n is the day number and the period is 2L = 

365 days. From the given data, the maximum declination 

occurs on June 21 as 

𝛿𝑚𝑎𝑥  = 𝛿(172) = 23.45° = 𝑎 
This must correspond to where the cosine term is equal 

to 1, such that 
360

365
𝑛𝑚𝑎𝑥 + 𝜑 = 0 → 𝜑 = −𝑛𝑚𝑎𝑥

360

365
 

Thus the declination becomes 

𝛿(𝑛) = 23.45 cos (
360

365
𝑛 − 172) 

or equivalently, 

𝛿(𝑛) = −23.45 cos (
360

365
𝑛 + 10.5) 

 
 

2.15  

 

In order to plot lines of constant declination on a plot 

similar to Fig. 2.10, we must write the declination in 

terms of two polar coordinates, namely the solar azimuth 

and altitude angles. The solar altitude angle is from Eq. 

(2.28), and can be written in terms of the hour angle as 

cos ℎ𝑠 =
sin 𝛼 − sin 𝐿 sin 𝛿𝑠

cos 𝐿 cos 𝛿𝑠
 

The solar azimuth is given by Eq. (2.29), which can be 

rearranged as 

sin ℎ𝑠 =
sin 𝑎𝑠 cos 𝛼

cos 𝛿𝑠
 

Using the identity, sin2 𝜃 + cos2 𝜃 = 1, the hour angle 

is removed as a variable. The answer is then written as 

sin 𝑎𝑠 = ±√
(cos 𝐿 cos 𝛿𝑠)2 − (sin 𝛼 − sin 𝐿 sin 𝛿𝑠)2

(cos 𝐿 cos 𝛼)2
 

There will be a unique plot for each latitude. For each 

declination, two solar azimuth angles will result for each 

solar altitude angle—i.e., one before (-) and one after (+) 

solar noon. 

 
2.16  

 

Referring to Fig. 2.11a, 

cos 𝑎 = 𝑥/𝑟 

tan 𝛼 = 𝑧/𝑟 

tan 𝛾 = 𝑧/𝑥 
Solving for z/x, 

tan 𝛾 = sec 𝑎 tan 𝛼 

 
2.17  

 

Eq. (2.48), through some effort, can be written in terms 

of the hour angle and declination as 

cos 𝑖 = sin(𝐿 − 𝛽) sin 𝛿𝑠 + cos(𝐿 − 𝛽) cos 𝛿𝑠 cos ℎ𝑠 
To get the average value of the function cos i, we 

integrate over the year (declination) and over the entire 

day (hour angle). 

cos 𝑖|𝑎𝑣𝑔 =
2 ∫ ∫ cos 𝑖 𝑑ℎ𝑠𝑑𝛿𝑠

ℎ𝑠,𝑚𝑎𝑥

ℎ𝑠,𝑚𝑖𝑛

𝛿𝑠,𝑚𝑎𝑥

𝛿𝑠,𝑚𝑖𝑛

2(𝛿𝑠,𝑚𝑎𝑥 − 𝛿𝑠,𝑚𝑖𝑛)(ℎ𝑠,𝑚𝑎𝑥 − ℎ𝑠,𝑚𝑖𝑛)
 

The factor of 2 is there as the declination range is seen 

twice in the yearly movement. Recognizing that the 

minimum values are simply the negative of the 

maximum values, integration with respect to the hour 

angle yields 

cos 𝑖|𝑎𝑣𝑔 =
1

4𝛿𝑠,𝑚𝑎𝑥ℎ𝑠,𝑚𝑎𝑥
∫ [sin(𝐿 − 𝛽) sin 𝛿𝑠

𝛿𝑠,𝑚𝑎𝑥

𝛿𝑠,𝑚𝑖𝑛

+ 2cos(𝐿 − 𝛽) cos 𝛿𝑠 sin ℎ𝑠,𝑚𝑎𝑥]𝑑𝛿𝑠 

Completing the second integration, 

cos 𝑖|𝑎𝑣𝑔 =
cos(𝐿 − 𝛽) sin 𝛿𝑠,𝑚𝑎𝑥 sin ℎ𝑠,𝑚𝑎𝑥

𝛿𝑠,𝑚𝑎𝑥ℎ𝑠,𝑚𝑎𝑥
 

It should be noted that the average of the cosine of i does 

not yield the average i, but this is acceptable as we don’t 

need the average i. We only want to find 𝛽 for the 



minimum i, which coincides with the 𝛽 for the 

maximum cosine of i. Since the maximum occurs at 

cos(𝐿 − 𝛽) = 1, 

𝛽𝑜𝑝𝑡𝑖𝑚𝑢𝑚 = 𝐿 

Notes: 

1. Integration in the range where the sun is not in view 

of the collector, or is below the horizon, would yield a 

meaningless average for the angle of incidence. 

However, the choice of range is not significant here as it 

cancels in finding the optimum 𝛽. 

 
2.18  

 

From Eq. (2.23), 

May 1, 𝑛 = 121, 𝛿𝑠 = 14.9° 

Dec 1, 𝑛 = 335, 𝛿𝑠 = −22.1° 
From Eq. (2.30), 

ℎ𝑠𝑠 = cos−1[− tan 𝐿 tan 𝛿𝑠] 
May 1, ℎ𝑠𝑠 = 96.49° 

Dec 1, ℎ𝑠𝑠 = 80.07° 
With 15º per hour, sunsets are at 

May 1, Sunset time = 6.43hrs = 6:26 pm 

Dec 1, Sunset time = 5.34hrs = 5:20 pm 

 
2.19  

 

From Eq. (2.27), 

Jun 10, 𝑛 = 161, 𝐸𝑇 = 0.76 min 

Jan 10, 𝑛 = 10, 𝐸𝑇 = −7.42 min 
From Eq. (2.26), on Jun 10, 

Solar Time = 9𝑎𝑚 + 0.76min + (105 − 107) ∙ 4min 

Solar Time = 8: 53𝑎𝑚 
Similarly for Jan 10, 

Solar Time = 10𝑎𝑚 − 7.42min + (105 − 107) ∙ 4min 

Solar Time = 9: 45𝑎𝑚 
Notes: 

1. Daylight savings time has the clocks ahead by an 

hour, such that LST is one hour behind Local Daylight 

Time. 

 
2.20  

 

Miami is at latitude 25.79 ºN. For each month, Table 

A2.1 gives the average daily extraterrestrial horizontal 

insolation as 

May, 𝐻̅𝑜,ℎ = 11.04
𝑘𝑊ℎ

𝑚2𝑑𝑎𝑦
= 39.74

𝑀𝐽

𝑚2𝑑𝑎𝑦
 

Oct, 𝐻̅𝑜,ℎ = 8.125
𝑘𝑊ℎ

𝑚2𝑑𝑎𝑦
= 29.25

𝑀𝐽

𝑚2𝑑𝑎𝑦
 

Using the Angström-Page method, Table 2.4 gives a 

= 0.42 and b = 0.22 for Miami. Then from Eq. (2.52), 

May, 𝐻̅ℎ = 37.51 (0.22 + 0.57
60

100
)

𝑀𝐽

𝑚2𝑑𝑎𝑦

= 21.9
𝑀𝐽

𝑚2𝑑𝑎𝑦
 

Oct, 𝐻̅ℎ = 29.25 (0.22 + 0.57
70

100
)

𝑀𝐽

𝑚2𝑑𝑎𝑦

= 18.1
𝑀𝐽

𝑚2𝑑𝑎𝑦
 

To compare with the ASHRAE clear-sky model, we will 

need to calculate the radiation over the course of the day 

and integrate via quadrature. For May 15, 𝜏𝑏 and 𝜏𝑑 are 

0.487 and 1.988, respectively (linear interpolation is 

used to find values for days other than the 21
st
 days of 

each month). Instantaneous horizontal solar irradiance 

values are calculated from sunrise to noon, as tabulated 

below. 

Time (hr) Ih (W/m
2
) 

5.37 8.4 

6 80.3 

7 279.9 

8 500.0 

9 700.3 

10 858.3 

11 959.0 

12 993.5 

 (The irradiance is nonzero at sunrise due to some 

diffuse radiation.) We calculate the daily total irradiance 

as 

𝐻̅ℎ = 2 ∙ (3862.3𝑊ℎ) = 27.8
𝑀𝐽

𝑚2𝑑𝑎𝑦
  

(The factor of two accounts for the afternoon irradiance.) 

Similarly, for October (𝜏𝑏 and 𝜏𝑑 of 0.435 and 2.225, 

respectively): 

𝐻̅ℎ = 2 ∙ (2779.3𝑊ℎ) = 20.0
𝑀𝐽

𝑚2𝑑𝑎𝑦
 

The ASHRAE values are larger because they do not take 

into account weather events that can interfere with the 

sun’s rays. The values are close to those of the 

Angström-Page method with 100% possible sunshine. 
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Eq. (2.55) is given as 

𝐷̅ℎ

𝐻̅ℎ

= 1.390 − 4.027𝐾̅𝑇 + 5.531𝐾̅𝑇
2 − 3.108 𝐾̅𝑇

3 

Where from Eq. (2.50), 

𝐾̅𝑇 =
𝐻̅ℎ

1394𝑊/𝑚2
 

Introduce a modified monthly clearness index to be 



𝐾̅𝑇
′ =

𝐻̅ℎ

1366.1𝑊/𝑚2
 

Thus, 

𝐾̅𝑇 = 𝐾̅𝑇
′

1366.1

1394
= 0.980𝐾̅𝑇

′  

and with the new parameter, Eq. (2.55) becomes 

𝐷̅ℎ

𝐻̅ℎ

= 1.390 − 3.946𝐾̅𝑇
′ + 5.312 𝐾̅𝑇

′2 − 2.925 𝐾̅𝑇
′3 

 
2.22  

 

The Denver ASHRAE clear-sky parameters are available 

for the 21
st
 day of each month; by interpolation, we have 

𝜏𝑏 and 𝜏𝑑 of 0.363 and 2.243, respectively, for 

September 9. Using the ASHRAE method, the diffuse 

and beam radiation values are tabulated below for each 

hour from sunrise to noon. 

Time 

(hr) 

Id 

(W/m
2
) 

Ib 

(W/m
2
) 

5.37 12.0 0.0 

6 21.9 2.6 

7 71.9 145.8 

8 100.0 357.3 

9 118.2 558.5 

10 129.8 719.7 

11 136.4 823.1 

12 138.6 858.7 

It can be seen that the diffuse radiation at 9:30AM is 

approximately 124 W/m
2
, while the beam radiation is 

approximately 639 W/m
2
.  

 
 

 

2.23  

 
From the law of sines, 

𝐷

sin 𝛽
=

𝑏

sin 𝛾
 

Further reduce with 

𝑏 = 𝐿 sin 𝛽 
to obtain the result: 

𝐷 =
𝐿 sin2 𝛽

sin 𝛾
 

 
 

 

 



Chapter 3 

Solar Thermal Collectors 
 

3.1  

 

The parameter m is determined as 

𝑚 = √
𝑈𝑐

𝑘𝑡
= 7.66𝑚−1 

The conductivity for aluminum is interpolated from 

Table A3.4 to be 118.1 Btu/hr·ft·ºF or 204.4 W/mK. 

Therefore, the fin efficiency is determined as 

𝜂𝑓 =
tanh(𝑚𝑤)

𝑚𝑤
= 0.916 

Where the length 

𝑤 =
𝑙′ − 𝐷

2
= 0.069𝑚 

From Eq. (3.39), the collector efficiency factor is 

𝐹′ =
1/𝑈𝑐

𝑙′[1/(𝑈𝑐(𝐷 + 2𝑤𝜂𝑓) + 1/(ℎ𝑐,𝑖𝑃]
= 0.906 

where the tube perimeter is simply P = 𝜋 D. Then from 

Eq. (3.45), 

𝐹𝑅 =
(𝑚̇/𝐴𝑐)𝑐𝑝

𝑈𝑐
[1 − exp (−

𝑈𝑐𝐹′

(𝑚̇/𝐴𝑐)𝑐𝑝
)] 

𝐹𝑅 = 0.823 
where the specific heat for water is 4179 J/kgºC as given 

in Table A3.2. 

 
3.2  

 

Data for the insolation can be taken from Table A2.6c 

(40°N). Value for March 1 must be obtained by 

interpolation. The radiation incident on the collector is 

obtained directly: 

𝐼𝑐 = 996𝑊/𝑚2 
From Eq. (3.46), 

𝜂𝑐 = 𝐹𝑅 [𝜏𝛼 −
𝑈𝑐(𝑇𝑓,𝑖 − 𝑇𝑎)

𝐼𝑐
] 

𝜂𝑐 = 0.823 [(0.9)(0.9) −
6(330 − 280)

991
] = 0.419 

The heat removal factor was taken from Problem 3.1. 

 
3.3  

 

Values of the collector heat capacity are found in 

Example 3.2 to be 

 
Then from Eq. (3.54), 

 
For one hour, t = 3600 s. The collector area in example 

3.2 is given as 2 m
2
. Therefore, at 9 AM, 

 
Note that during the first hour, 8-9 AM, there was no 

collector temperature rise as there was no absorbed 

insolation. Following the same method for the next hour, 

 

 
3.4  

 

Neglecting edge losses, the total heat losses are from the 

top and bottom as 

 
where the thermal resistance through the bottom is only 

according to the insulation conductivity. 

 
The top surface convection coefficient and other 

parameters are found as 

 

 
where N = 2 for two glass covers. From the definition in 

Eq. (3.13), 

 
and so combining with Eq. (3.23), 

 
with the Stefan-Boltzman constant as 5.67x10

-8 
W/m

2
K

4
, 


