
Chapter 1. Heat Equation

Section 1.2

1.2.9 (d) Circular cross section means that P = 2πr,A = πr2, and thus P/A = 2/r, where r is the radius.
Also γ = 0.

1.2.9 (e) u(x, t) = u(t) implies that

cρ
du

dt
= −2h

r
u .

The solution of this first-order linear differential equation with constant coefficients, which satisfies the
initial condition u(0) = u0, is

u(t) = u0 exp
[
− 2h

cρr
t

]
.

Section 1.3

1.3.2 ∂u/∂x is continuous if K0(x0−) = K0(x0+), that is, if the conductivity is continuous.

Section 1.4

1.4.1 (a) Equilibrium satisfies (1.4.14), d2u/dx2 = 0, whose general solution is (1.4.17), u = c1 + c2x. The
boundary condition u(0) = 0 implies c1 = 0 and u(L) = T implies c2 = T/L so that u = Tx/L.

1.4.1 (d) Equilibrium satisfies (1.4.14), d2u/dx2 = 0, whose general solution (1.4.17), u = c1 + c2x. From
the boundary conditions, u(0) = T yields T = c1 and du/dx(L) = α yields α = c2. Thus u = T + αx.

1.4.1 (f) In equilibrium, (1.2.9) becomes d2u/dx2 = −Q/K0 = −x2 , whose general solution (by integrating
twice) is u = −x4/12 + c1 + c2x. The boundary condition u(0) = T yields c1 = T , while du/dx(L) = 0
yields c2 = L3/3. Thus u = −x4/12 + L3x/3 + T .

1.4.1 (h) Equilibrium satisfies d2u/dx2 = 0. One integration yields du/dx = c2, the second integration
yields the general solution u = c1 + c2x.

x = 0 : c2 − (c1 − T ) = 0
x = L : c2 = α and thus c1 = T + α.

Therefore, u = (T + α) + αx = T + α(x + 1).

1.4.7 (a) For equilibrium:

d2u

dx2
= −1 implies u = −x2

2
+ c1x + c2 and

du

dx
= −x + c1.

From the boundary conditions du
dx (0) = 1 and du

dx (L) = β, c1 = 1 and −L + c1 = β which is consistent
only if β + L = 1. If β = 1 − L, there is an equilibrium solution (u = −x2

2 + x + c2). If β 6= 1 − L,
there isn’t an equilibrium solution. The difficulty is caused by the heat flow being specified at both
ends and a source specified inside. An equilibrium will exist only if these three are in balance. This
balance can be mathematically verified from conservation of energy:

d

dt

∫ L

0

cρu dx = −du

dx
(0) +

du

dx
(L) +

∫ L

0

Q0 dx = −1 + β + L.

If β + L = 1, then the total thermal energy is constant and the initial energy = the final energy:
∫ L

0

f(x) dx =
∫ L

0

(
−x2

2
+ x + c2

)
dx, which determines c2.

If β + L 6= 1, then the total thermal energy is always changing in time and an equilibrium is never
reached.
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Section 1.5

1.5.9 (a) In equilibrium, (1.5.14) using (1.5.19) becomes d
dr

(
r du

dr

)
= 0. Integrating once yields rdu/dr = c1

and integrating a second time (after dividing by r) yields u = c1 ln r+c2. An alternate general solution
is u = c1 ln(r/r1) + c3. The boundary condition u(r1) = T1 yields c3 = T1, while u(r2) = T2 yields
c1 = (T2 − T1)/ ln(r2/r1). Thus, u = 1

ln(r2/r1)
[(T2 − T1) ln r/r1 + T1 ln(r2/r1)].

1.5.11 For equilibrium, the radial flow at r = a, 2πaβ, must equal the radial flow at r = b, 2πb. Thus β = b/a.

1.5.13 From exercise 1.5.12, in equilibrium d
dr

(
r2 du

dr

)
= 0. Integrating once yields r2du/dr = c1 and integrat-

ing a second time (after dividing by r2 ) yields u = −c1/r + c2. The boundary conditions u(4) = 80
and u(1) = 0 yields 80 = −c1/4 + c2 and 0 = −c1 + c2. Thus c1 = c2 = 320/3 or u = 320

3

(
1− 1

r

)
.
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Chapter 2. Method of Separation of Variables

Section 2.3

2.3.1 (a) u(r, t) = φ(r)h(t) yields φdh
dt = kh

r
d
dr

(
r dφ

dr

)
. Dividing by kφh yields 1

kh
dh
dt = 1

rφ
d
dr

(
r dφ

dr

)
= −λ or

dh
dt = −λkh and 1

r
d
dr

(
r dφ

dr

)
= −λφ.

2.3.1 (c) u(x, y) = φ(x)h(y) yields hd2φ
dx2 + φd2h

dy2 = 0. Dividing by φh yields 1
φ

d2φ
dx2 = − 1

h
d2h
dy2 = −λ or

d2φ
dx2 = −λφ and d2h

dy2 = λh.

2.3.1 (e) u(x, t) = φ(x)h(t) yields φ(x)dh
dt = kh(t)d4φ

dx4 . Dividing by kφh, yields 1
kh

dh
dt = 1

φ
d4φ
dx4 = λ.

2.3.1 (f) u(x, t) = φ(x)h(t) yields φ(x)d2h
dt2 = c2h(t)d2φ

dx2 . Dividing by c2φh, yields 1
c2h

d2h
dt2 = 1

φ
d2φ
dx2 = −λ.

2.3.2 (b) λ = (nπ/L)2 with L = 1 so that λ = n2π2, n = 1, 2, . . .

2.3.2 (d)

(i) If λ > 0, φ = c1 cos
√

λx + c2 sin
√

λx. φ(0) = 0 implies c1 = 0, while dφ
dx (L) = 0 implies

c2

√
λ cos

√
λL = 0. Thus

√
λL = −π/2 + nπ(n = 1, 2, . . .).

(ii) If λ = 0, φ = c1 + c2x. φ(0) = 0 implies c1 = 0 and dφ/dx(L) = 0 implies c2 = 0. Therefore λ = 0
is not an eigenvalue.

(iii) If λ < 0, let λ = −s and φ = c1 cosh
√

sx+c2 sinh
√

sx. φ(0) = 0 implies c1 = 0 and dφ/dx(L) = 0
implies c2

√
s cosh

√
sL = 0. Thus c2 = 0 and hence there are no eigenvalues with λ < 0.

2.3.2 (f) The simpliest method is to let x′ = x−a. Then d2φ/dx′2 +λφ = 0 with φ(0) = 0 and φ(b−a) = 0.
Thus (from p. 46) L = b− a and λ = [nπ/(b− a)]2 , n = 1, 2, . . ..

2.3.3 From (2.3.30), u(x, t) =
∑∞

n=1 Bn sin nπx
L e−k(nπ/L)2t. The initial condition yields

2 cos 3πx
L =

∑∞
n=1 Bn sin nπx

L . From (2.3.35), Bn = 2
L

∫ L

0
2 cos 3πx

L sin nπx
L dx.

2.3.4 (a) Total heat energy =
∫ L

0
cρuA dx = cρA

∑∞
n=1 Bne−k(nπ

L )2
t 1−cos nπ

nπ
L

, using (2.3.30) where Bn

satisfies (2.3.35).

2.3.4 (b)
heat flux to right = −K0∂u/∂x
total heat flow to right = −K0A∂u/∂x
heat flow out at x = 0 = K0A

∂u
∂x

∣∣
x=0

heat flow out (x = L) = −K0A
∂u
∂x

∣∣
x=L

2.3.4 (c) From conservation of thermal energy, d
dt

∫ L

0
u dx = k ∂u

∂x

∣∣∣
L

0
= k ∂u

∂x (L) − k ∂u
∂x (0). Integrating from

t = 0 yields ∫ L

0

u(x, t) dx

︸ ︷︷ ︸
heat energy

at t

−
∫ L

0

u(x, 0) dx

︸ ︷︷ ︸
initial heat

energy

= k

∫ t

0

[
∂u

∂x
(L)

︸ ︷︷ ︸
integral of
flow in at

x = L

− ∂u

∂x
(0)

]
dx

︸ ︷︷ ︸
integral of
flow out at

x = L

.

2.3.8 (a) The general solution of k d2u
dx2 = αu (α > 0) is u(x) = a cosh

√
α
k x + b sinh

√
α
k x. The boundary

condition u(0) = 0 yields a = 0, while u(L) = 0 yields b = 0. Thus u = 0.
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2.3.8 (b) Separation of variables, u = φ(x)h(t) or φdh
dt + αφh = khd2φ

dx2 , yields two ordinary differential
equations (divide by kφh): 1

kh
dh
dt + α

k = 1
φ

d2φ
dx2 = −λ. Applying the boundary conditions, yields the

eigenvalues λ = (nπ/L)2 and corresponding eigenfunctions φ = sin nπx
L . The time-dependent part are

exponentials, h = e−λkte−αt. Thus by superposition, u(x, t) = e−αt
∑∞

n=1 bn sin nπx
L e−k(nπ/L)2t, where

the initial conditions u(x, 0) = f(x) =
∑∞

n=1 bn sin nπx
L yields bn = 2

L

∫ L

0
f(x) sin nπx

L dx. As t → ∞,
u → 0, the only equilibrium solution.

2.3.9 (a) If α < 0, the general equilibrium solution is u(x) = a cos
√
−α
k x + b sin

√
−α
k x. The boundary

condition u(0) = 0 yields a = 0, while u(L) = 0 yields b sin
√
−α
k L = 0. Thus if

√
−α
k L 6= nπ, u = 0 is

the only equilibrium solution. However, if
√
−α
k L = nπ, then u = A sin nπx

L is an equilibrium solution.

2.3.9 (b) Solution obtained in 2.3.8 is correct. If −α
k =

(
π
L

)2
, u(x, t) → b1 sin πx

L , the equilibrium solution.
If −α

k <
(

π
L

)2, then u → 0 as t →∞. However, if −α
k >

(
π
L

)2
, u →∞ (if b1 6= 0). Note that b1 > 0 if

f(x) ≥ 0. Other more unusual events can occur if b1 = 0. [Essentially, the other possible equilibrium
solutions are unstable.]

Section 2.4

2.4.1 The solution is given by (2.4.19), where the coefficients satisfy (2.4.21) and hence (2.4.23-24).

(a) A0 = 1
L

∫ L

L/2
1dx = 1

2 , An = 2
L

∫ L

L/2
cos nπx

L dx = 2
L · L

nπ sin nπx
L

∣∣∣LL/2 = − 2
nπ sin nπ

2

(b) by inspection A0 = 6, A3 = 4, others = 0.

(c) A0 = −2
L

∫ L

0
sin πx

L dx = 2
π cos πx

L

∣∣∣
L

0
= 2

π (1− cosπ) = 4/π, An = −4
L

∫ L

0
sin πx

L cos nπx
L dx

(d) by inspection A8 = −3, others = 0.

2.4.3 Let x′ = x− π. Then the boundary value problem becomes d2φ/dx′2 = −λφ subject to φ(−π) = φ(π)
and dφ/dx′(−π) = dφ/dx′(π). Thus, the eigenvalues are λ = (nπ/L)2 = n2π2, since L = π, n =
0, 1, 2, ... with the corresponding eigenfunctions being both sinnπx′/L = sin n(x−π) = (−1)n sin nx =>
sin nx and cos nπx′/L = cos n(x− π) = (−1)n cos nx => cos nx.

Section 2.5

2.5.1 (a) Separation of variables, u(x, y) = h(x)φ(y), implies that 1
h

d2h
dx2 = − 1

φ
d2φ
dy2 = −λ. Thus d2h/dx2 =

−λh subject to h′(0) = 0 and h′(L) = 0. Thus as before, λ = (nπ/L)2, n = 0, l, 2, . . . with h(x) =
cosnπx/L. Furthermore, d2φ

dy2 = λφ =
(

nπ
L

)2
φ so that

n = 0 : φ = c1 + c2y, where φ(0) = 0 yields c1 = 0

n 6= 0 : φ = c1 cosh nπy
L + c2 sinh nπy

L , where φ(0) = 0 yields c1 = 0.

The result of superposition is

u(x, y) = A0y +
∞∑

n=1

An cos
nπx

L
sinh

nπy

L
.

The nonhomogeneous boundary condition yields

f(x) = A0H +
∞∑

n=1

An sinh
nπH

L
cos

nπx

L
,

so that

A0H =
1
L

∫ L

0

f(x) dx and An sinh
nπH

L
=

2
L

∫ L

0

f(x) cos
nπx

L
dx.
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2.5.1 (c) Separation of variables, u = h(x)φ(y), yields 1
h

d2h
dx2 = − 1

φ
d2φ
dy2 = λ. The boundary conditions

φ(0) = 0 and φ(H) = 0 yield an eigenvalue problem in y, whose solution is λ = (nπ/H)2 with
φ = sin nπy/H, n = 1, 2, 3, . . . The solution of the x-dependent equation is h(x) = cosh nπx/H using
dh/dx(0) = 0. By superposition:

u(x, y) =
∞∑

n=1

An cosh
nπx

H
sin

nπy

H
.

The nonhomogeneous boundary condition at x = L yields g(y) =
∑∞

n=1 An cosh nπL
H sin nπy

H , so that
An is determined by An cosh nπL

H = 2
H

∫ H

0
g(y) sin nπy

H dy.

2.5.1 (e) Separation of variables, u = φ(x)h(y), yields the eigenvalues λ = (nπ/L)2 and corresponding
eigenfunctions φ = sin nπx/L, n = 1, 2, 3, ... The y-dependent differential equation, d2h

dy2 =
(

nπ
L

)2
h,

satisfies h(0) − dh
dy (0) = 0. The general solution h = c1 cosh nπy

L + c2 sinh nπy
L obeys h(0) = c1,

while dh
dy = nπ

L

(
c1 sinh nπy

L + c2 cosh nπy
L

)
obeys dh

dy (0) = c2
nπ
L . Thus, c1 = c2

nπ
L and hence hn(y) =

cosh nπy
L + L

nπ sinh nπy
L . Superposition yields

u(x, y) =
∞∑

n=1

Anhn(y) sin nπx/L,

where An is determined from the boundary condition, f(x) =
∑∞

n=1 Anhn(H) sin nπx/L, and hence

Anhn(H) =
2
L

∫ L

0

f(x) sin nπx/L dx .

2.5.2 (a) From physical reasoning (or exercise 1.5.8), the total heat flow across the boundary must equal
zero in equilibrium (without sources, i.e. Laplace’s equation). Thus

∫ L

0
f(x) dx = 0 for a solution.

2.5.3 In order for u to be bounded as r →∞, c1 = 0 in (2.5.43) and c̄2 = 0 in (2.5.44). Thus,

u(r, θ) =
∞∑

n=0

Anr−n cos nθ +
∞∑

n=1

Bnr−n sin nθ.

(a) The boundary condition yields A0 = ln 2, A3a
−3 = 4, other An = 0, Bn = 0.

(b) The boundary conditions yield (2.5.46) with a−n replacing an. Thus, the coefficients are determined
by (2.5.47) with an replaced by a−n

2.5.4 By substituting (2.5.47) into (2.5.45) and interchanging the orders of summation and integration

u(r, θ) =
1
π

∫ π

−π

f(θ̄)

[
1
2

+
∞∑

n=1

( r

a

)n (
cos nθ cos nθ̄ + sin nθ sin nθ̄

)
]

dθ̄.

Noting the trigonometric addition formula and cos z = Re[eiz], we obtain

u(r, θ) =
1
π

∫ π

−π

f(θ̄)

[
−1

2
+ Re

∞∑
n=0

( r

a

)n

ein(θ−θ̄)

]
dθ̄.

Summing the geometric series enables the bracketed term to be replaced by

−1
2

+ Re
1

1− r
aei(θ−θ̄)

= −1
2

+
1− r

a cos(θ − θ̄)

1 + r2

a2 − 2r
a cos(θ − θ̄)

=
1
2 − 1

2
r2

a2

1 + r2

a2 − 2r
a cos(θ − θ̄)

.
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2.5.5 (a) The eigenvalue problem is d2φ/dθ2 = −λφ subject to dφ/dθ(0) = 0 and φ(π/2) = 0. It can be
shown that λ > 0 so that φ = cos

√
λθ where φ(π/2) = 0 implies that cos

√
λπ/2 = 0 or

√
λπ/2 =

−π/2 + nπ, n = 1, 2, 3, . . . The eigenvalues are λ = (2n − 1)2. The radially dependent term satisfies
(2.5.40), and hence the boundedness condition at r = 0 yields G(r) = r2n−1. Superposition yields

u(r, θ) =
∞∑

n=1

Anr2n−1 cos(2n− 1)θ.

The nonhomogeneous boundary condition becomes

f(θ) =
∞∑

n=1

An cos(2n− 1)θ or An =
4
π

∫ π/2

0

f(θ) cos(2n− 1)θ dθ.

2.5.5 (c) The boundary conditions of (2.5.37) must be replaced by φ(0) = 0 and φ(π/2) = 0. Thus, L = π/2,
so that λ = (nπ/L)2 = (2n)2 and φ = sin nπθ

L = sin 2nθ. The radial part that remains bounded at
r = 0 is G = r

√
λ = r2n. By superposition,

u(r, θ) =
∞∑

n=1

Anr2n sin 2nθ .

To apply the nonhomogeneous boundary condition, we differentiate with respect to r:

∂u

∂r
=

∞∑
n=1

An(2n)r2n−1 sin 2nθ .

The bc at r = 1, f(θ) =
∑∞

n=1 2nAn sin 2nθ , determines An, 2nAn = 4
π

∫ π/2

0
f(θ) sin 2nθ dθ.

2.5.6 (a) The boundary conditions of (2.5.37) must be replaced by φ(0) = 0 and φ(π) = 0. Thus L = π,
so that the eigenvalues are λ = (nπ/L)2 = n2 and corresponding eigenfunctions φ = sin nπθ/L =
sin nθ, n = 1, 2, 3, ... The radial part which is bounded at r = 0 is G = r

√
λ = rn. Thus by superposition

u(r, θ) =
∞∑

n=1

Anrn sinnθ .

The bc at r = a, g(θ) =
∑∞

n=1 Anan sin nθ, determines An, Anan = 2
π

∫ π

0
g(θ) sin nθ dθ.

2.5.7 (b) The boundary conditions of (2.5.37) must be replaced by φ′(0) = 0 and φ′(π/3) = 0. This will
yield a cosine series with L = π/3, λ = (nπ/L)2 = (3n)2 and φ = cos nπθ/L = cos 3nθ, n = 0, 1, 2, . . ..
The radial part which is bounded at r = 0 is G = r

√
λ = r3n. Thus by superposition

u(r, θ) =
∞∑

n=0

Anr3n cos 3nθ .

The boundary condition at r = a, g(θ) =
∑∞

n=0 Ana3n cos 3nθ, determines An: A0 = 3
π

∫ π/3

0
g(θ) dθ

and (n 6= 0)Ana3n = 6
π

∫ π/3

0
g(θ) cos 3nθ dθ.

2.5.8 (a) There is a full Fourier series in θ. It is easier (but equivalent) to choose radial solutions that satisfy
the corresponding homogeneous boundary condition. Instead of rn and r−n (1 and ln r for n = 0), we
choose φ1(r) such that φ1(a) = 0 and φ2(r) such that φ2(b) = 0 :

φ1(r) =
{

ln(r/a) n = 0(
r
a

)n − (
a
r

)n
n 6= 0

φ2(r) =
{

ln(r/b) n = 0(
r
b

)n − (
b
r

)n
n 6= 0

.
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Then by superposition

u(r, θ) =
∞∑

n=0

cos nθ [Anφ1(r) + Bnφ2(r)] +
∞∑

n=1

sin nθ [Cnφ1(r) + Dnφ2(r)] .

The boundary conditions at r = a and r = b,

f(θ) =
∞∑

n=0

cosnθ [Anφ1(a) + Bnφ2(a)] +
∞∑

n=1

sinnθ [Cnφ1(a) + Dnφ2(a)]

g(θ) =
∞∑

n=0

cosnθ [Anφ1(b) + Bnφ2(b)] +
∞∑

n=1

sinnθ [Cnφ1(b) + Dnφ2(b)]

easily determine An, Bn, Cn, Dn since φ1(a) = 0 and φ2(b) = 0 : Dnφ2(a) = 1
π

∫ π

−π
f(θ) sin nθ dθ, etc.

2.5.9 (a) The boundary conditions of (2.5.37) must be replaced by φ(0) = 0 and φ(π/2) = 0. This is a
sine series with L = π/2 so that λ = (nπ/L)2 = (2n)2 and the eigenfunctions are φ = sin nπθ/L =
sin 2nθ, n = 1, 2, 3, . . .. The radial part which is zero at r = a is G = (r/a)2n − (a/r)2n. Thus by
superposition,

u(r, θ) =
∞∑

n=1

An

[( r

a

)2n

−
(a

r

)2n
]

sin 2nθ.

The nonhomogeneous boundary condition, f(θ) =
∑∞

n=1 An

[(
b
a

)2n − (
a
b

)2n
]
sin 2nθ, determines An :

An

[(
b
a

)2n − (
a
b

)2n
]

= 4
π

∫ π/2

0
f(θ) sin 2nθ dθ.

2.5.9 (b) The two homogeneous boundary conditions are in r, and hence φ(r) must be an eigenvalue problem.
By separation of variables, u = φ(r)G(θ), d2G/dθ2 = λG and r2 d2φ

dr2 +r dφ
dr +λφ = 0 . The radial equation

is equidimensional (see p.78) and solutions are in the form φ = rp. Thus p2 = −λ (with λ > 0) so
that p = ±i

√
λ. r±i

√
λ = e±i

√
λ ln r. Thus real solutions are cos(

√
λ ln r) and sin(

√
λ ln r). It is more

convenient to use independent solutions which simplify at r = a, cos[
√

λ ln(r/a)] and sin[
√

λ ln(r/a)].
Thus the general solution is

φ = c1 cos[
√

λ ln(r/a)] + c2 sin[
√

λ ln(r/a)].

The homogeneous condition φ(a) = 0 yields 0 = c1, while φ(b) = 0 implies sin[
√

λ ln(r/a)] = 0 . Thus√
λ ln(b/a) = nπ, n = 1, 2, 3, ... and the corresponding eigenfunctions are φ = sin

[
nπ ln(r/a)

ln(b/a)

]
. The

solution of the θ -equation satisfying G(0) = 0 is G = sinh
√

λθ = sinh nπθ
ln(b/a) . Thus by superposition

u =
∞∑

n=1

An sinh
nπθ

ln(b/a)
sin

[
nπ

ln(r/a)
ln(b/a)

]
.

The nonhomogeneous boundary condition,

f(r) =
∞∑

n=1

An sinh
nπ2

2 ln(b/a)
sin

[
nπ

ln(r/a)
ln(b/a)

]
,

will determine An. One method (for another, see exercise 5.3.9) is to let z = ln(r/a)/ ln(b/a). Then
a < r < b, lets 0 < z < 1. This is a sine series in z (with L = 1) and hence

An sinh
nπ2

2 ln(b/a)
= 2

∫ 1

0

f(r) sin
[
nπ

ln(r/a)
ln(b/a)

]
dz.

But dz = dr/r ln(b/a). Thus

An sinh
nπ2

2 ln(b/a)
=

2
ln(b/a)

∫ 1

0

f(r) sin
[
nπ

ln(r/a)
ln(b/a)

]
dr/r.
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