PROBLEM 1.1

KNOWN: Thermal conductivity, thickness and temperature difference across a sheet of rigid extruded insulation.

FIND: (a) The heat flux through a $2 \mathrm{~m} \times 2 \mathrm{~m}$ sheet of the insulation, and (b) The heat rate through the sheet.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional conduction in the x-direction, (2) Steady-state conditions, (3) Constant properties.

ANALYSIS: From Equation 1.2 the heat flux is

$$
\mathrm{q}_{\mathrm{x}}^{\prime \prime}=-\mathrm{k} \frac{\mathrm{dT}}{\mathrm{dx}}=\mathrm{k} \frac{\mathrm{~T}_{1}-\mathrm{T}_{2}}{\mathrm{~L}}
$$

Solving,

$$
\begin{aligned}
& \mathrm{q}_{\mathrm{x}}^{\prime \prime}=0.029 \frac{\mathrm{~W}}{\mathrm{~m} \cdot \mathrm{~K}} \times \frac{10 \mathrm{~K}}{0.02 \mathrm{~m}} \\
& \mathrm{q}_{\mathrm{x}}^{\prime \prime}=14.5 \frac{\mathrm{~W}}{\mathrm{~m}^{2}}
\end{aligned}
$$

$$
<
$$

The heat rate is

$$
\mathrm{q}_{\mathrm{x}}=\mathrm{q}_{\mathrm{x}}^{\prime \prime} \cdot \mathrm{A}=14.5 \frac{\mathrm{~W}}{\mathrm{~m}^{2}} \times 4 \mathrm{~m}^{2}=58 \mathrm{~W}
$$

$$
<
$$

COMMENTS: (1) Be sure to keep in mind the important distinction between the heat flux ($\mathrm{W} / \mathrm{m}^{2}$) and the heat rate (W). (2) The direction of heat flow is from hot to cold. (3) Note that a temperature difference may be expressed in kelvins or degrees Celsius.

PROBLEM 1.2

KNOWN: Thickness and thermal conductivity of a wall. Heat flux applied to one face and temperatures of both surfaces.
FIND: Whether steady-state conditions exist.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional conduction, (2) Constant properties, (3) No internal energy generation.

ANALYSIS: Under steady-state conditions an energy balance on the control volume shown is

$$
q_{\mathrm{in}}^{\prime \prime}=q_{\mathrm{out}}^{\prime \prime}=q_{\mathrm{cond}}^{\prime \prime}=k\left(T_{1}-T_{2}\right) / L=12 \mathrm{~W} / \mathrm{m} \cdot \mathrm{~K}\left(50^{\circ} \mathrm{C}-30^{\circ} \mathrm{C}\right) / 0.01 \mathrm{~m}=24,000 \mathrm{~W} / \mathrm{m}^{2}
$$

Since the heat flux in at the left face is only $20 \mathrm{~W} / \mathrm{m}^{2}$, the conditions are not steady state.

COMMENTS: If the same heat flux is maintained until steady-state conditions are reached, the steady-state temperature difference across the wall will be

$$
\Delta T=q^{\prime \prime} L / k=20 \mathrm{~W} / \mathrm{m}^{2} \times 0.01 \mathrm{~m} / 12 \mathrm{~W} / \mathrm{m} \cdot \mathrm{~K}=0.0167 \mathrm{~K}
$$

which is much smaller than the specified temperature difference of $20^{\circ} \mathrm{C}$.

PROBLEM 1.3

KNOWN: Inner surface temperature and thermal conductivity of a concrete wall.
FIND: Heat loss by conduction through the wall as a function of outer surface temperatures ranging from -15 to $38^{\circ} \mathrm{C}$.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional conduction in the x-direction, (2) Steady-state conditions, (3) Constant properties.

ANALYSIS: From Fourier's law, if $\mathrm{q}_{\mathrm{x}}^{\prime \prime}$ and k are each constant it is evident that the gradient, $d T / d x=-q_{X}^{\prime \prime} / k$, is a constant, and hence the temperature distribution is linear. The heat flux must be constant under one-dimensional, steady-state conditions; and k is approximately constant if it depends only weakly on temperature. The heat flux and heat rate when the outside wall temperature is $\mathrm{T}_{2}=-15^{\circ} \mathrm{C}$ are

$$
\begin{align*}
& \mathrm{q}_{\mathrm{x}}^{\prime \prime}=-\mathrm{k} \frac{\mathrm{dT}}{\mathrm{dx}}=\mathrm{k} \frac{\mathrm{~T}_{1}-\mathrm{T}_{2}}{\mathrm{~L}}=1 \mathrm{~W} / \mathrm{m} \cdot \mathrm{~K} \frac{25^{\circ} \mathrm{C}-\left(-15^{\circ} \mathrm{C}\right)}{0.30 \mathrm{~m}}=133.3 \mathrm{~W} / \mathrm{m}^{2} . \tag{1}\\
& \mathrm{q}_{\mathrm{x}}=\mathrm{q}_{\mathrm{x}}^{\prime \prime} \times \mathrm{A}=133.3 \mathrm{~W} / \mathrm{m}^{2} \times 20 \mathrm{~m}^{2}=2667 \mathrm{~W} . \tag{}
\end{align*}
$$

Combining Eqs. (1) and (2), the heat rate q_{x} can be determined for the range of outer surface temperature, $-15 \leq \mathrm{T}_{2} \leq 38^{\circ} \mathrm{C}$, with different wall thermal conductivities, k .

For the concrete wall, $\mathrm{k}=1 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}$, the heat loss varies linearly from +2667 W to -867 W and is zero when the inside and outer surface temperatures are the same. The magnitude of the heat rate increases with increasing thermal conductivity.
COMMENTS: Without steady-state conditions and constant k , the temperature distribution in a plane wall would not be linear.

PROBLEM 1.4

KNOWN: Dimensions, thermal conductivity and surface temperatures of a concrete slab. Efficiency of gas furnace and cost of natural gas.
FIND: Daily cost of heat loss.

SCHEMATIC:

ASSUMPTIONS: (1) Steady state, (2) One-dimensional conduction, (3) Constant properties.
ANALYSIS: The rate of heat loss by conduction through the slab is

$$
\mathrm{q}=\mathrm{k}(\mathrm{LW}) \frac{\mathrm{T}_{1}-\mathrm{T}_{2}}{\mathrm{t}}=1.4 \mathrm{~W} / \mathrm{m} \cdot \mathrm{~K}(11 \mathrm{~m} \times 8 \mathrm{~m}) \frac{7^{\circ} \mathrm{C}}{0.20 \mathrm{~m}}=4312 \mathrm{~W}
$$

The daily cost of natural gas that must be combusted to compensate for the heat loss is

$$
\mathrm{C}_{\mathrm{d}}=\frac{\mathrm{qC}_{\mathrm{g}}}{\eta_{\mathrm{f}}}(\Delta \mathrm{t})=\frac{4312 \mathrm{~W} \times \$ 0.02 / \mathrm{MJ}}{0.9 \times 10^{6} \mathrm{~J} / \mathrm{MJ}}(24 \mathrm{~h} / \mathrm{d} \times 3600 \mathrm{~s} / \mathrm{h})=\$ 8.28 / \mathrm{d}
$$

$$
<
$$

COMMENTS: The loss could be reduced by installing a floor covering with a layer of insulation between it and the concrete.

PROBLEM 1.5

KNOWN: Thermal conductivity and thickness of a wall. Heat flux through wall. Steady-state conditions.
FIND: Value of temperature gradient in K / m and in ${ }^{\circ} \mathrm{C} / \mathrm{m}$.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional conduction, (2) Constant properties.
ANALYSIS: Under steady-state conditions,

$$
\frac{d T}{d x}=-\frac{q_{x}^{\prime \prime}}{k}=-\frac{10 \mathrm{~W} / \mathrm{m}^{2}}{2.3 \mathrm{~W} / \mathrm{m} \cdot \mathrm{~K}}=-4.35 \mathrm{~K} / \mathrm{m}=-4.35^{\circ} \mathrm{C} / \mathrm{m}
$$

Since the K units here represent a temperature difference, and since the temperature difference is the same in K and ${ }^{\circ} \mathrm{C}$ units, the temperature gradient value is the same in either units.

COMMENTS: A negative value of temperature gradient means that temperature is decreasing with increasing x, corresponding to a positive heat flux in the x-direction.

