
Data Abstraction and Problem Solving with C++: Walls and Mirrors, 6th edition, Frank M. Carrano and Timothy Henry.
Solutions to Exercises, Ver. 6.0.

© 2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 2

Chapter 1 Data Abstraction: The Walls

1 const CENTS_PER_DOLLAR = 100;

 /** Computes the change remaining from purchasing an item costing
 dollarCost dollars and centsCost cents with d dollars and c cents.
 Precondition: dollarCost, centsCost, d and c are all nonnegative
 integers and centsCost and c are both less than CENTS_PER_DOLLAR.
 Postcondition: d and c contain the computed remainder values in
 dollars and cents respectively. If input value d < dollarCost, the
 proper negative values for the amount owed in d dollars and/or c
 cents is returned. */
 void computeChange(int dollarCost, int centsCost, int& d, int& c);

2a const MONTHS_PER_YEAR = 12;

const DAYS_PER_MONTH[] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

/** Increments the input Date values (month, day, year) by one day.
 Precondition: 1 <= month <= MONTHS_PER_YEAR,
 1 <= day <= DAYS_PER_MONTH[month - 1], except
 when month == 2, day == 29 and isLeapYear(year) is true.
 Postcondition: The valid numeric values for the succeeding month, day,
 and year are returned. */
void incrementDate(int& month, int& day, int& year);

/** Determines if the input year is a leap year.
 Precondition: year > 0.
 Postcondition: Returns true if year is a leap year; false otherwise. */
bool isLeapYear(int year);

3a Change the purpose of an appointment:

changeAppointmentPurpose(apptDate: Date, apptTime: Time,
 purpose: string): boolean
 if (isAppointment(apptDate, apptTime))
 cancelAppointment(apptDate, apptTime)

 return makeAppointment(apptDate, apptTime, purpose)

3b Display all the appointments for a given date:

displayAllAppointments(apptDate: Date)
 time = startOfDay

 while (time < endOfDay)
 if (isAppointment(apptDate, time))
 displayAppointment(apptDate, time)

 time = time + halfHour

This implementation requires the definition of a new operation,
displayAppointment(), as well as definitions for the constants
startOfDay, endOfDay and halfHour.

Data Abstraction and Problem Solving with C++: Walls and Mirrors, 6th edition, Frank M. Carrano and Timothy Henry.
Solutions to Exercises, Ver. 6.0.

© 2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 3

4
 Bag<string> fragileBag;

 while (storeBag.contains("eggs"))
 {
 storeBag.remove("eggs");
 fragileBag.add("eggs");
 } // end while

 while (storeBag.contains("bread"))
 {
 storeBag.remove("bread");
 fragileBag.add("bread");
 } // end while

 // Transfer remaining items from storeBag to groceryBag;
 Bag<string> groceryBag;
 v = storeBag.toVector();
 for (int i = 0; i < v.size(); i++)
 groceryBag.add(v.at(i));

5
/** Removes and counts all occurrences, if any, of a given string
 from a given bag of strings.
 @param bag A given bag of strings.
 @param givenString A string.
 @return The number of occurrences of givenString that occurred
 and were removed from the given bag. */
int removeAndCount(ArrayBag<string>& bag, string givenString)
{
 int counter = 0;
 while (bag.contains(givenString))
 {
 counter++;
 bag.remove(givenString);
 } // end while

 return counter;
} // end removeAndCount

6
/** Creates a new bag that combines the contents of this bag and a
 second given bag without affecting the original two bags.
 @param anotherBag The given bag.
 @return A bag that is the union of the two bags. */
public BagInterface<ItemType> union(BagInterface<ItemType> anotherBag);

7
/** Creates a new bag that contains those objects that occur in both this
 bag and a second given bag without affecting the original two bags.
 @param anotherBag The given bag.
 @return A bag that is the intersection of the two bags. */
public BagInterface<ItemType> intersection(BagInterface<ItemType> anotherBag);

Data Abstraction and Problem Solving with C++: Walls and Mirrors, 6th edition, Frank M. Carrano and Timothy Henry.
Solutions to Exercises, Ver. 6.0.

© 2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 4

8
/** Creates a new bag of objects that would be left in this bag
 after removing those that also occur in a second given bag
 without affecting the original two bags.
 @param anotherBag The given bag.
 @return A bag that is the difference of the two bags. */
public BagInterface<T> difference(BagInterface<T> anotherBag);

9a display(p.coefficient(p.degree()))

9b p.changeCoefficient(p.coefficient(3) + 8, 3)

9c for (power = 0; power < p.degree() || power < q.degree(); power++)
 // R is the sum of polynomials P and Q to degree power.
 r.changeCoefficient(p.coefficient(power) + q.coefficient(power), power)

Data Abstraction and Problem Solving with C++: Walls and Mirrors, 6th edition, Frank M. Carrano and Timothy Henry.
Solutions to Exercises, Ver. 6.0.

© 2013 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 5

Chapter 2 Recursion: The Mirrors

1 The problem is defined in terms of a smaller problem of the same type:

 Here, the last value in the array is checked and then the remaining part of
 the array is passed to the function.

Each recursive call diminishes the size of the problem:
 The recursive call to getNumberEqual subtracts 1 from the current value
 for n, passing this as the parameter n in the next call, effectively
 reducing the size of the unsearched remainder of the array by 1.

An instance of the problem serves as the base case:
 Here, the case where the size of the array is 0 (i.e.: n ≤ 0)
 results in the return of the value 0: an array of size 0 can have no
 instances of the desiredValue. This terminates the recursion.

As the problem size diminishes, the base case is reached:
 n is an integer and is decremented by 1 with each recursive call.
 After n recursive calls, the parameter n in the nth call will have
 the value 0 and the base case will be reached.

2a The call rabbit(5) produces the following box trace:

 Follow the rabbit(4) call

 Follow the rabbit(3) call

 Follow the rabbit(2) call

 Base case: n = 2

 The rabbit(2) call
 completes

n = 5
rabbit(4) = ?
rabbit(3) = ?
return ?

n = 5
rabbit(4) = ?
rabbit(3) = ?
return ?

n = 4
rabbit(3) = ?
rabbit(2) = ?
return ?

n = 5
rabbit(4) = ?
rabbit(3) = ?
return ?

n = 4
rabbit(3) = ?
rabbit(2) = ?
return ?

n = 3
rabbit(2) = ?
rabbit(1) = ?
return ?

n = 5
rabbit(4) = ?
rabbit(3) = ?
return ?

n = 4
rabbit(3) = ?
rabbit(2) = ?
return ?

n = 3
rabbit(2) = ?
rabbit(1) = ?
return ?

n = 2

return 1

n = 5
rabbit(4) = ?
rabbit(3) = ?
return ?

n = 4
rabbit(3) = ?
rabbit(2) = ?
return ?

n = 3
rabbit(2) = ?
rabbit(1) = ?
return ?

n = 2

return 1

