12-1.

Starting from rest, a particle moving in a straight line has an acceleration of $a=(2 t-6) \mathrm{m} / \mathrm{s}^{2}$, where t is in seconds. What is the particle's velocity when $t=6 \mathrm{~s}$, and what is its position when $t=11 \mathrm{~s}$?

SOLUTION

$a=2 t-6$
$d v=a d t$
$\int_{0}^{v} d v=\int_{0}^{t}(2 t-6) d t$
$v=t^{2}-6 t$
$d s=v d t$
$\int_{0}^{s} d s=\int_{0}^{t}\left(t^{2}-6 t\right) d t$
$s=\frac{t^{3}}{3}-3 t^{2}$
When $t=6 s$,
$v=0$
When $t=11 \mathrm{~s}$,
$s=80.7 \mathrm{~m}$
Ans.

Ans.

Ans:
$s=80.7 \mathrm{~m}$

12-2.

If a particle has an initial velocity of $v_{0}=12 \mathrm{ft} / \mathrm{s}$ to the right, at $s_{0}=0$, determine its position when $t=10 \mathrm{~s}$, if $a=2 \mathrm{ft} / \mathrm{s}^{2}$ to the left.

SOLUTION

$(\xrightarrow{+}) \quad s=s_{0}+v_{0} t+\frac{1}{2} a_{c} t^{2}$

$$
=0+12(10)+\frac{1}{2}(-2)(10)^{2}
$$

$$
=20 \mathrm{ft}
$$

Ans.

Ans:

12-3.

A particle travels along a straight line with a velocity $v=\left(12-3 t^{2}\right) \mathrm{m} / \mathrm{s}$, where t is in seconds. When $t=1 \mathrm{~s}$, the particle is located 10 m to the left of the origin. Determine the acceleration when $t=4 \mathrm{~s}$, the displacement from $t=0$ to $t=10 \mathrm{~s}$, and the distance the particle travels during this time period.

SOLUTION

$v=12-3 t^{2}$
$a=\frac{d v}{d t}=-\left.6 t\right|_{t=4}=-24 \mathrm{~m} / \mathrm{s}^{2}$
$\int_{-10}^{s} d s=\int_{1}^{t} v d t=\int_{1}^{t}\left(12-3 t^{2}\right) d t$
$s+10=12 t-t^{3}-11$
$s=12 t-t^{3}-21$
$\left.s\right|_{t=0}=-21$
$\left.s\right|_{t=10}=-901$
$\Delta s=-901-(-21)=-880 \mathrm{~m}$

From Eq. (1):
$v=0$ when $t=2 s$
$\left.s\right|_{t=2}=12(2)-(2)^{3}-21=-5$
$s_{T}=(21-5)+(901-5)=912 m$
(1)

Ans.

Ans.

Ans.

> Ans: $\begin{aligned} & a=-24 \mathrm{~m} / \mathrm{s}^{2} \\ & \Delta s=-880 \mathrm{~m} \\ & s_{T}=912 \mathrm{~m}\end{aligned}$
*12-4.
A particle travels along a straight line with a constant acceleration. When $s=4 \mathrm{ft}, v=3 \mathrm{ft} / \mathrm{s}$ and when $s=10 \mathrm{ft}$, $v=8 \mathrm{ft} / \mathrm{s}$. Determine the velocity as a function of position.

SOLUTION

Velocity: To determine the constant acceleration a_{c}, set $s_{0}=4 \mathrm{ft}, v_{0}=3 \mathrm{ft} / \mathrm{s}$, $s=10 \mathrm{ft}$ and $v=8 \mathrm{ft} / \mathrm{s}$ and apply Eq. 12-6.

$$
\begin{aligned}
& \left(\begin{array}{c}
\text { 土 }) \\
v^{2}
\end{array}=v_{0}^{2}+2 a_{c}\left(s-s_{0}\right)\right. \\
& 8^{2}=3^{2}+2 a_{c}(10-4) \\
& a_{c}=4.583 \mathrm{ft} / \mathrm{s}^{2}
\end{aligned}
$$

Using the result $a_{c}=4.583 \mathrm{ft} / \mathrm{s}^{2}$, the velocity function can be obtained by applying Eq. 12-6.

$$
\left(\begin{array}{rl}
v^{2} & =v_{0}^{2}+2 a_{c}\left(s-s_{0}\right) \\
v^{2} & =3^{2}+2(4.583)(s-4) \\
v & =(\sqrt{9.17 \mathrm{~s}-27.7}) \mathrm{ft} / \mathrm{s}
\end{array}\right.
$$

Ans.

Ans:

$v=(\sqrt{9.17 \mathrm{~s}-27.7}) \mathrm{ft} / \mathrm{s}$

