PROBLEM 2.1

Two forces are applied as shown to a hook. Determine graphically the magnitude and direction of their resultant using (a) the parallelogram law, (b) the triangle rule.

SOLUTION

(a) Parallelogram law:

(b) Triangle rule:

We measure:
$R=1391 \mathrm{kN}, \quad \alpha=47.8^{\circ}$
$\mathbf{R}=1391 \mathrm{~N} \backslash 47.8^{\circ}$

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

SOLUTION

(a) Parallelogram law:

(b) Triangle rule:

We measure:

$$
R=906 \mathrm{lb}, \alpha=26.6^{\circ}
$$

$$
R=906 \mathrm{lb} \text { ぐ } 26.6^{\circ} .
$$

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

PROBLEM 2.3

Two forces \mathbf{P} and \mathbf{Q} are applied as shown at Point A of a hook support. Knowing that $P=75 \mathrm{~N}$ and $Q=125 \mathrm{~N}$, determine graphically the magnitude and direction of their resultant using (a) the parallelogram law, (b) the triangle rule.

SOLUTION

(a) Parallelogram law:

(b) Triangle rule:

We measure:

$$
R=179 \mathrm{~N}, \quad \alpha=75.1^{\circ}
$$

$$
\mathbf{R}=179 \mathrm{~N}\left\ulcorner 75.1^{\circ}\right.
$$

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

SOLUTION

(a) Parallelogram law:

(b) Triangle rule:

We measure:

$$
R=77.1 \mathrm{lb}, \quad \alpha=85.4^{\circ}
$$

$$
\mathbf{R}=77.1 \mathrm{lb}>85.4^{\circ}
$$

