Chapter 1
 A Review of the Linear Regression Model

1. a. Construct a scatterplot with GPA on the y-axis and SAT-Quant. on the x-axis. Fit by hand (and straight edge) the estimated linear regression line. Comment on the relationship between these two variables. (p.6)

There is a positive linear relationship between GPA and SAT-Quant.
b. Using the formulas for a two-variable OLS regression model, compute the slope and intercept for the following model: GPA $={ }^{\prime}+\$_{1}$ (SAT-Quant.). (p.7)

Slope (1.5): $\quad \beta_{1}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}$

$$
\begin{aligned}
& \$_{1}{ }^{\prime} \quad \operatorname{COV}\{X Y\}^{a} \div \mathrm{SS}(\mathrm{x})^{\mathrm{b}} \\
& \$_{1}{ }^{\prime} \quad 4.954 \div 20.71279 \\
& \mathbf{\$ 1}^{\text {' }} \mathbf{0 . 2 3 9 1 7 6} \\
& \text { Intercept (1.6): } \alpha=\bar{Y}-\beta_{1} \bar{X} \\
& \text { ' ' mean of } Y \&(\text { Slope (} \mathrm{x} \text { the mean of } X \text {) } \\
& \text { ' ' } 2.3 \text { \& (} 0.239176 \text { (4.20625) } \\
& \text { ' ' } 1.293966
\end{aligned}
$$

c. Compute the predicted values, the residuals, the Sum of Squared Errors (SSE), and the R^{2} for the model. (pp.5-8)

As an example of the predicted and residual values we will use the data point (3.21, 1.97). See the table on page 5 for a complete list.

Predicted Value(1.3): $\hat{Y}=\alpha+\beta_{1} X$

$$
\begin{array}{ll}
\mathbf{i} & \text { ' intercept \% (slope (an } X \text { value) } \\
\mathbf{i} & 1.29 \%(.239(3.21) \\
\mathbf{i} & \mathbf{2 . 0 6}
\end{array}
$$

Residual:

$$
\begin{aligned}
& e^{\prime} \quad Y \& \mathbf{i} \\
& e^{\prime} \quad Y \text { value \& predicted } Y \text { value } \\
& e^{\prime} 1.97 \& 2.06 \\
& e^{\prime} \quad \mathbf{!} \mathbf{0 9}
\end{aligned}
$$

Sum of Squared $E_{\text {Errors }}{ }^{\mathrm{c}}$ (1.4): $\mathrm{SSE} \cdot \sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}$
${ }^{a}$ The covariance of X and Y.
${ }^{\mathrm{b}}$ The Sum of Squares of X.
${ }^{\text {c }}$ Also termed the Residual Sum of Squares.

