Exercises for Chapter 1

Exercises for Section 1.1: Describing a Set

- 1.1 Only (d) and (e) are sets.
- 1.2 (a) $A = \{1, 2, 3\} = \{x \in S : x > 0\}.$
 - (b) $B = \{0, 1, 2, 3\} = \{x \in S : x \ge 0\}.$
 - (c) $C = \{-2, -1\} = \{x \in S : x < 0\}.$
 - (d) $D = \{x \in S : |x| \ge 2\}.$
- 1.3 (a) |A| = 5. (b) |B| = 11. (c) |C| = 51. (d) |D| = 2. (e) |E| = 1. (f) |F| = 2.
- 1.4 (a) $A = \{n \in \mathbf{Z} : -4 < n \le 4\} = \{-3, -2, \dots, 4\}.$
 - (b) $B = \{n \in \mathbf{Z} : n^2 < 5\} = \{-2, -1, 0, 1, 2\}.$
 - (c) $C = \{n \in \mathbb{N} : n^3 < 100\} = \{1, 2, 3, 4\}.$
 - (d) $D = \{x \in \mathbf{R} : x^2 x = 0\} = \{0, 1\}.$
 - (e) $E = \{x \in \mathbf{R} : x^2 + 1 = 0\} = \{\} = \emptyset.$
- 1.5 (a) $A = \{-1, -2, -3, \ldots\} = \{x \in \mathbf{Z} : x \le -1\}.$
 - (b) $B = \{-3, -2, \dots, 3\} = \{x \in \mathbf{Z} : -3 \le x \le 3\} = \{x \in \mathbf{Z} : |x| \le 3\}.$
 - (c) $C = \{-2, -1, 1, 2\} = \{x \in \mathbf{Z} : -2 \le x \le 2, x \ne 0\} = \{x \in \mathbf{Z} : 0 < |x| \le 2\}.$
- 1.6 (a) $A = \{2x + 1 : x \in \mathbf{Z}\} = \{\dots, -5, -3, -1, 1, 3, 5, \dots\}.$
 - (b) $B = \{4n : n \in \mathbb{Z}\} = \{\cdots, -8, -4, 0, 4, 8, \cdots\}.$
 - (c) $C = \{3q+1: q \in \mathbf{Z}\} = \{\cdots, -5, -2, 1, 4, 7, \cdots\}.$
- 1.7 (a) $A = \{\cdots, -4, -1, 2, 5, 8, \cdots\} = \{3x + 2 : x \in \mathbf{Z}\}.$
 - (b) $B = \{\dots, -10, -5, 0, 5, 10, \dots\} = \{5x : x \in \mathbf{Z}\}.$
 - (c) $C = \{1, 8, 27, 64, 125, \dots\} = \{x^3 : x \in \mathbb{N}\}.$
- 1.8 (a) $A = \{n \in \mathbf{Z} : 2 \le |n| < 4\} = \{-3, -2, 2, 3\}.$
 - (b) 5/2, 7/2, 4.
 - (c) $C = \{x \in \mathbf{R} : x^2 (2 + \sqrt{2})x + 2\sqrt{2} = 0\} = \{x \in \mathbf{R} : (x 2)(x \sqrt{2}) = 0\} = \{2, \sqrt{2}\}.$
 - (d) $D = \{x \in \mathbf{Q} : x^2 (2 + \sqrt{2})x + 2\sqrt{2} = 0\} = \{2\}.$
 - (e) |A| = 4, |C| = 2, |D| = 1.
- 1.9 $A = \{2, 3, 5, 7, 8, 10, 13\}.$
 - $B = \{x \in A : x = y + z, \text{ where } y, z \in A\} = \{5, 7, 8, 10, 13\}.$
 - $C = \{r \in B : r + s \in B \text{ for some } s \in B\} = \{5, 8\}.$

Exercises for Section 1.2: Subsets

- 1.10 (a) $A = \{1, 2\}, B = \{1, 2\}, C = \{1, 2, 3\}.$
 - (b) $A = \{1\}, B = \{\{1\}, 2\}, C = \{\{\{1\}, 2\}, 1\}.$
 - (c) $A = \{1\}, B = \{\{1\}, 2\}, C = \{1, 2\}.$
- 1.11 Let $r = \min(c a, b c)$ and let I = (c r, c + r). Then I is centered at c and $I \subseteq (a, b)$.
- 1.12 $A = B = D = E = \{-1, 0, 1\}$ and $C = \{0, 1\}$.
- 1.13 See Figure 1.

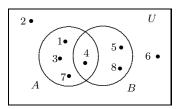


Figure 1: Answer for Exercise 1.13

- 1.14 (a) $\mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}; |\mathcal{P}(A)| = 4.$
 - $\text{(b)} \ \ \mathcal{P}(A) = \{\emptyset, \{\emptyset\}, \{1\}, \{\{a\}\}, \{\emptyset, 1\}, \{\emptyset, \{a\}\}, \{1, \{a\}\}, \{\emptyset, 1, \{a\}\}\}; \ |\mathcal{P}(A)| = 8.$
- 1.15 $\mathcal{P}(A) = \{\emptyset, \{0\}, \{\{0\}\}, A\}.$
- 1.16 $\mathcal{P}(\{1\}) = \{\emptyset, \{1\}\}, \mathcal{P}(\mathcal{P}(\{1\})) = \{\emptyset, \{\emptyset\}, \{\{1\}\}, \{\emptyset, \{1\}\}\}; |\mathcal{P}(\mathcal{P}(\{1\}))| = 4.$
- 1.17 $\mathcal{P}(A) = \{\emptyset, \{0\}, \{\emptyset\}, \{\{\emptyset\}\}, \{0,\emptyset\}, \{0,\{\emptyset\}\}, \{\emptyset,\{\emptyset\}\}, A\}; |\mathcal{P}(A)| = 8.$
- 1.18 $\mathcal{P}(\{0\}) = \{\emptyset, \{0\}\}.$

$$A = \{x : x = 0 \text{ or } x \in \mathcal{P}(\{0\})\} = \{0, \emptyset, \{0\}\}.$$

$$\mathcal{P}(A) = \{\emptyset, \{0\}, \{\emptyset\}, \{\{0\}\}, \{0, \emptyset\}, \{0, \{0\}\}, \{\emptyset, \{0\}\}, A\}.$$

- 1.19 (a) $S = \{\emptyset, \{1\}\}.$
 - (b) $S = \{1\}.$
 - (c) $S = \{\emptyset, \{1\}, \{2\}, \{3\}, \{4, 5\}\}.$
 - (d) $S = \{1, 2, 3, 4, 5\}.$
- 1.20 (a) False. For example, for $A = \{1, \{1\}\}$, both $1 \in A$ and $\{1\} \in A$.
 - (b) Because $\mathcal{P}(B)$ is the set of all subsets of the set B and $A \subset \mathcal{P}(B)$ with |A| = 2, it follows that A is a proper subset of $\mathcal{P}(B)$ consisting of exactly two elements of $\mathcal{P}(B)$. Thus $\mathcal{P}(B)$ contains at least one element that is not in A. Suppose that |B| = n. Then $|\mathcal{P}(B)| = 2^n$. Since $2^n > 2$, it follows that $n \geq 2$ and $|\mathcal{P}(B)| = 2^n \geq 4$. Because $\mathcal{P}(B) \subset C$, it is impossible that |C| = 4. Suppose that $A = \{\{1\}, \{2\}\}, B = \{1, 2\}$ and $C = \mathcal{P}(B) \cup \{3\}$. Then $A \subset \mathcal{P}(B) \subset C$, where |A| = 2 and |C| = 5.

- (c) No. For $A = \emptyset$ and $B = \{1\}$, $|\mathcal{P}(A)| = 1$ and $|\mathcal{P}(B)| = 2$.
- (d) Yes. There are only three distinct subsets of $\{1, 2, 3\}$ with two elements.
- 1.21 $B = \{1, 4, 5\}.$

Exercises for Section 1.3: Set Operations

- 1.22 (a) $A \cup B = \{1, 3, 5, 9, 13, 15\}.$
 - (b) $A \cap B = \{9\}.$
 - (c) $A B = \{1, 5, 13\}.$
 - (d) $B A = \{3, 15\}.$
 - (e) $\overline{A} = \{3, 7, 11, 15\}.$
 - (f) $A \cap \overline{B} = \{1, 5, 13\}.$
- 1.23 Let $A = \{1, 2, ..., 6\}$ and $B = \{4, 5, ..., 9\}$. Then $A B = \{1, 2, 3\}$, $B A = \{7, 8, 9\}$ and $A \cap B = \{4, 5, 6\}$. Thus $|A B| = |A \cap B| = |B A| = 3$. See Figure 2.

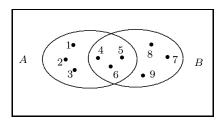


Figure 2: Answer for Exercise 1.23

- 1.24 Let $A = \{1, 2\}$, $B = \{1, 3\}$ and $C = \{2, 3\}$. Then $B \neq C$ but $B A = C A = \{3\}$.
- 1.25 (a) $A = \{1\}, B = \{\{1\}\}, C = \{1, 2\}.$
 - (b) $A = \{\{1\}, 1\}, B = \{1\}, C = \{1, 2\}.$
 - (c) $A = \{1\}, B = \{\{1\}\}, C = \{\{1\}, 2\}.$
- 1.26 (a) and (b) are the same, as are (c) and (d).
- 1.27 Let $U = \{1, 2, \dots, 8\}$ be a universal set, $A = \{1, 2, 3, 4\}$ and $B = \{3, 4, 5, 6\}$. Then $A B = \{1, 2\}$, $B A = \{5, 6\}$, $A \cap B = \{3, 4\}$ and $\overline{A \cup B} = \{7, 8\}$. See Figure 3.
- 1.28 See Figures 4(a) and 4(b).
- 1.29 (a) The sets \emptyset and $\{\emptyset\}$ are elements of A.
 - (b) |A| = 3.
 - (c) All of \emptyset , $\{\emptyset\}$ and $\{\emptyset, \{\emptyset\}\}$ are subsets of A.
 - (d) $\emptyset \cap A = \emptyset$.

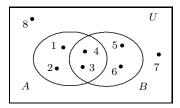
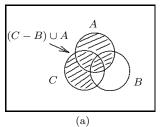


Figure 3: Answer for Exercise 1.27



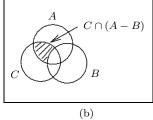


Figure 4: Answers for Exercise 1.28

- (e) $\{\emptyset\} \cap A = \{\emptyset\}.$
- (f) $\{\emptyset, \{\emptyset\}\} \cap A = \{\emptyset, \{\emptyset\}\}.$
- (g) $\emptyset \cup A = A$.
- (h) $\{\emptyset\} \cup A = A$.
- (i) $\{\emptyset, \{\emptyset\}\} \cup A = A$.

1.30 (a)
$$A = \{x \in \mathbf{R} : |x - 1| \le 2\} = \{x \in \mathbf{R} : -2 \le x - 1 \le 2\} = \{x \in \mathbf{R} : -1 \le x \le 3\} = [-1, 3]$$

 $B = \{x \in \mathbf{R} : |x| \ge 1\} = \{x \in \mathbf{R} : x \ge 1 \text{ or } x \le -1\} = (-\infty, -1] \cup [1, \infty)$
 $C = \{x \in \mathbf{R} : |x + 2| \le 3\} = \{x \in \mathbf{R} : -3 \le x + 2 \le 3\} = \{x \in \mathbf{R} : -5 \le x \le 1\} = [-5, 1]$

(b)
$$A \cup B = (-\infty, \infty) = \mathbf{R}, \ A \cap B = \{-1\} \cup [1, 3],$$

 $B \cap C = [-5, -1] \cup \{1\}, \ B - C = (-\infty, -5) \cup (1, \infty).$

1.31
$$A = \{1, 2\}, B = \{2\}, C = \{1, 2, 3\}, D = \{2, 3\}.$$

$$1.32\ A=\{1,2,3\},\,B=\{1,2,4\},\,C=\{1,3,4\},\,D=\{2,3,4\}.$$

- 1.33 $A = \{1\}, B = \{2\}.$
- 1.34 $A = \{1, 2\}, B = \{2, 3\}.$
- 1.35 Let $U = \{1, 2, ..., 8\}$, $A = \{1, 2, 3, 5\}$, $B = \{1, 2, 4, 6\}$ and $C = \{1, 3, 4, 7\}$. See Figure 5.

Exercises for Section 1.4: Indexed Collections of Sets

1.36
$$\bigcup_{\alpha \in A} S_{\alpha} = S_1 \cup S_3 \cup S_4 = [0,3] \cup [2,5] \cup [3,6] = [0,6].$$

$$\bigcap_{\alpha \in A} S_{\alpha} = S_1 \cap S_3 \cap S_4 = \{3\}.$$

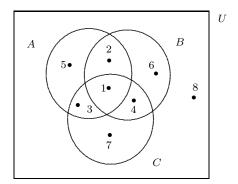


Figure 5: Answer for Exercise 1.35

1.37
$$\bigcup_{X \in S} X = A \cup B \cup C = \{0, 1, 2, \dots, 5\}$$
 and $\bigcap_{X \in S} X = A \cap B \cap C = \{2\}.$

1.38 (a)
$$\bigcup_{\alpha \in S} A_{\alpha} = A_1 \cup A_2 \cup A_4 = \{1\} \cup \{4\} \cup \{16\} = \{1, 4, 16\}.$$

$$\bigcap_{\alpha \in S} A_{\alpha} = A_1 \cap A_2 \cap A_4 = \emptyset.$$

(b)
$$\bigcup_{\alpha \in S} B_{\alpha} = B_1 \cup B_2 \cup B_4 = [0, 2] \cup [1, 3] \cup [3, 5] = [0, 5].$$

 $\bigcap_{\alpha \in S} B_{\alpha} = B_1 \cap B_2 \cap B_4 = \emptyset.$

(c)
$$\bigcup_{\alpha \in S} C_{\alpha} = C_1 \cup C_2 \cup C_4 = (1, \infty) \cup (2, \infty) \cup (4, \infty) = (1, \infty).$$

 $\bigcap_{\alpha \in S} C_{\alpha} = C_1 \cap C_2 \cap C_4 = (4, \infty).$

- 1.39 Since |A| = 26 and $|A_{\alpha}| = 3$ for each $\alpha \in A$, we need to have at least nine sets of cardinality 3 for their union to be A; that is, in order for $\bigcup_{\alpha \in S} A_{\alpha} = A$, we must have $|S| \ge 9$. However, if we let $S = \{a, d, g, j, m, p, s, v, y\}$, then $\bigcup_{\alpha \in S} A_{\alpha} = A$. Hence the smallest cardinality of a set S with $\bigcup_{\alpha \in S} A_{\alpha} = A$ is 9.
- 1.40 (a) $\bigcup_{i=1}^{5} A_{2i} = A_2 \cup A_4 \cup A_6 \cup A_8 \cup A_{10} = \{1, 3\} \cup \{3, 5\} \cup \{5, 7\} \cup \{7, 9\} \cup \{9, 11\} = \{1, 3, 5, \dots, 11\}.$ (b) $\bigcup_{i=1}^{5} (A_i \cap A_{i+1}) = \bigcup_{i=1}^{5} (\{i-1, i+1\} \cap \{i, i+2\}) = \bigcup_{i=1}^{5} \emptyset = \emptyset.$

(c)
$$\bigcup_{i=1}^{5} (A_{2i-1} \cap A_{2i+1}) = \bigcup_{i=1}^{5} (\{2i-2,2i\} \cap \{2i,2i+2\}) = \bigcup_{i=1}^{5} \{2i\} = \{2,4,6,8,10\}.$$

- 1.41 (a) $\{A_n\}_{n\in\mathbb{N}}$, where $A_n = \{x \in \mathbb{R} : 0 \le x \le 1/n\} = [0, 1/n]$.
 - (b) $\{A_n\}_{n \in \mathbb{N}}$, where $A_n = \{a \in \mathbb{Z} : |a| \le n\} = \{-n, -(n-1), \dots, (n-1), n\}$.
- 1.42 (a) $A_n = [1, 2 + \frac{1}{n}), \bigcup_{n \in \mathbb{N}} A_n = [1, 3) \text{ and } \bigcap_{n \in \mathbb{N}} A_n = [1, 2].$

(b)
$$A_n = \left(-\frac{2n-1}{n}, 2n\right), \bigcup_{n \in \mathbb{N}} A_n = (-2, \infty) \text{ and } \bigcap_{n \in \mathbb{N}} A_n = (-1, 2).$$

1.43
$$\bigcup_{r \in \mathbf{R}^+} A_r = \bigcup_{r \in \mathbf{R}^+} (-r, r) = \mathbf{R};$$

$$\bigcap_{r \in \mathbf{R}^+} A_r = \bigcap_{r \in \mathbf{R}^+} (-r, r) = \{0\}.$$

1.44 For $I = \{2, 8\}$, $|\bigcup_{i \in I} A_i| = 8$. Observe that there is no set I such that $|\bigcup_{i \in I} A_i| = 10$, for in this case, we must have either two 5-element subsets of A or two 3-element subsets of A and a 4-element subset of A. In each case, not every two subsets are disjoint. Furthermore, there is no set I such that $|\bigcup_{i \in I} A_i| = 9$, for in this case, one must either have a 5-element subset of A and a 4-element subset of A (which are not disjoint) or three 3-element subsets of A. No 3-element subset of A contains 1 and only one such subset contains 2. Thus $4, 5 \in I$ but there is no third element for I.

1.45
$$\bigcup_{n \in \mathbf{N}} A_n = \bigcup_{n \in \mathbf{N}} (-\frac{1}{n}, 2 - \frac{1}{n}) = (-1, 2);$$

$$\bigcap_{n \in \mathbf{N}} A_n = \bigcap_{n \in \mathbf{N}} (-\frac{1}{n}, 2 - \frac{1}{n}) = [0, 1].$$

Exercises for Section 1.5: Partitions of Sets

- 1.46 (a) S_1 is a partition of A.
 - (b) S_2 is not a partition of A because g belongs to no element of S_2 .
 - (c) S_3 is a partition of A.
 - (d) S_4 is not a partition of A because $\emptyset \in S_4$.
 - (e) S_5 is not a partition of A because b belongs to two elements of S_5 .
- 1.47 (a) S_1 is not a partition of A since 4 belongs to no element of S_1 .
 - (b) S_2 is a partition of A.
 - (c) S_3 is not a partition of A because 2 belongs to two elements of S_3 .
 - (d) S_4 is not a partition of A since S_4 is not a set of subsets of A.

1.48
$$S = \{\{1, 2, 3\}, \{4, 5\}, \{6\}\}; |S| = 3.$$

1.49
$$A = \{1, 2, 3, 4\}$$
. $S_1 = \{\{1\}, \{2\}, \{3, 4\}\}$ and $S_2 = \{\{1, 2\}, \{3\}, \{4\}\}$.

1.50 Let
$$S = \{A_1, A_2, A_3\}$$
, where $A_1 = \{x \in \mathbb{N} : x > 5\}$, $A_2 = \{x \in \mathbb{N} : x < 5\}$ and $A_3 = \{5\}$.

1.51 Let
$$S = \{A_1, A_2, A_3\}$$
, where $A_1 = \{x \in \mathbf{Q} : x > 1\}$, $A_2 = \{x \in \mathbf{Q} : x < 1\}$ and $A_3 = \{1\}$.

1.52
$$A = \{1, 2, 3, 4\}, S_1 = \{\{1\}, \{2\}, \{3, 4\}\} \text{ and } S_2 = \{\{\{1\}, \{2\}\}, \{\{3, 4\}\}\}.$$

1.53 Let $S = \{A_1, A_2, A_3, A_4\}$, where

$$A_1 = \{x \in \mathbf{Z} : x \text{ is odd and } x \text{ is positive}\},\$$

$$A_2 = \{x \in \mathbf{Z} : x \text{ is odd and } x \text{ is negative}\},\$$

 $A_3 = \{x \in \mathbf{Z} : x \text{ is even and } x \text{ is nonnegative}\},$

 $A_4 = \{x \in \mathbf{Z} : x \text{ is even and } x \text{ is negative}\}.$

1.54 Let
$$S = \{\{1\}, \{2\}, \{3, 4, 5, 6\}, \{7, 8, 9, 10\}, \{11, 12\}\}\$$
 and $T = \{\{1\}, \{2\}, \{3, 4, 5, 6\}, \{7, 8, 9, 10\}\}.$

1.55
$$|\mathcal{P}_1| = 2$$
, $|\mathcal{P}_2| = 3$, $|\mathcal{P}_3| = 5$, $|\mathcal{P}_4| = 8$, $|\mathcal{P}_5| = 13$, $|\mathcal{P}_6| = 21$.

1.56 (a) Suppose that a collection S of subsets of A satisfies Definition 1. Then every subset is nonempty. Every element of A belongs to a subset in S. If some element $a \in A$ belonged to more than one subset, then the subsets in S would not be pairwise disjoint. So the collection satisfies Definition 2.

- (b) Suppose that a collection S of subsets of A satisfies Definition 2. Then every subset is nonempty and (1) in Definition 3 is satisfied. If two subsets A₁ and A₂ in S were neither equal nor disjoint, then A₁ ≠ A₂ and there is an element a ∈ A such that a ∈ A₁ ∩ A₂, which would not satisfy Definition 2. So condition (2) in Definition 3 is satisfied. Since every element of A belongs to a (unique) subset in S, condition (3) in Definition 3 is satisfied. Thus Definition 3 itself is satisfied.
- (c) Suppose that a collection S of subsets of A satisfies Definition 3. By condition (1) in Definition 3, every subset is nonempty. By condition (2), the subsets are pairwise disjoint. By condition (3), every element of A belongs to a subset in S. So Definition 1 is satisfied.

Exercises for Section 1.6: Cartesian Products of Sets

```
1.57 A \times B = \{(x, x), (x, y), (y, x), (y, y), (z, x), (z, y)\}.
```

$$1.58 \ A \times A = \{(1, 1), (1, \{1\}), (1, \{\{1\}\}), (\{1\}, 1), (\{1\}, \{1\}), (\{1\}, \{\{1\}\}), (\{\{1\}\}, \{1\}\}), (\{\{1\}\}, \{\{1\}\})\}.$$

1.59
$$\mathcal{P}(A) = \{\emptyset, \{a\}, \{b\}, A\},\$$

 $A \times \mathcal{P}(A) = \{(a, \emptyset), (a, \{a\}), (a, \{b\}), (a, A), (b, \emptyset), (b, \{a\}), (b, \{b\}), (b, A)\}.$

1.60
$$\mathcal{P}(A) = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, A\},\$$

$$A \times \mathcal{P}(A) = \{(\emptyset, \emptyset), (\emptyset, \{\emptyset\}), (\emptyset, \{\{\emptyset\}\}), (\emptyset, A), (\{\emptyset\}, \emptyset), (\{\emptyset\}, \{\emptyset\}), (\{\emptyset\}, \{\{\emptyset\}\}), (\{\emptyset\}, A)\}.$$

1.61
$$\mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, A\}, \mathcal{P}(B) = \{\emptyset, B\}, A \times B = \{(1, \emptyset), (2, \emptyset)\},$$

 $\mathcal{P}(A) \times \mathcal{P}(B) = \{(\emptyset, \emptyset), (\emptyset, B), (\{1\}, \emptyset), (\{1\}, B), (\{2\}, \emptyset), (\{2\}, B), (A, \emptyset), (A, B)\}.$

1.62 $\{(x,y): x^2+y^2=4\}$, which is a circle centered at (0,0) with radius 2.

$$1.63 \ S = \{(3,0),(2,1),(2,-1),(1,2),(1,-2),(0,3),(0,-3),(-3,0),(-2,1),(-2,-1),(-1,2),(-1,-2)\}.$$
 See Figure 6.

1.64
$$A \times B = \{(1,1), (2,1)\},\$$

 $\mathcal{P}(A \times B) = \{\emptyset, \{(1,1)\}, \{(2,1)\}, A \times B\}$

1.65
$$A = \{x \in \mathbf{R} : |x - 1| \le 2\} = \{x \in \mathbf{R} : -1 \le x \le 3\} = [-1, 3]$$

 $B = \{y \in \mathbf{R} : |y - 4| \le 2\} = \{y \in \mathbf{R} : 2 \le y \le 6\} = [2, 6],$

 $A \times B = [-1, 3] \times [2, 6]$, which is the set of all points on and within the square bounded by x = -1, x = 3, y = 2 and y = 6.

1.66
$$A = \{a \in \mathbf{R} : |a| \le 1\} = \{a \in \mathbf{R} : -1 \le a \le 1\} = [-1, 1]$$

 $B = \{b \in \mathbf{R} : |b| = 1\} = \{-1, 1\},$

 $A \times B$ is the set of all points (x, y) on the lines y = 1 or y = -1 with $x \in [-1, 1]$, while $B \times A$ is the set of all points (x, y) on the lines x = 1 or x = -1 with $y \in [-1, 1]$. Therefore, $(A \times B) \cup (B \times A)$

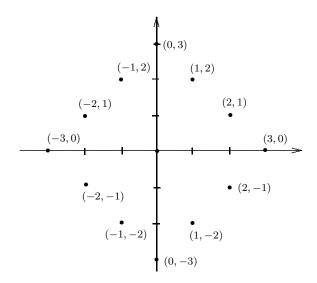


Figure 6: Answer for Exercise 1.63

is the set of all points lying on (but not within) the square bounded by x = 1, x = -1, y = 1 and y = -1.

Additional Exercises for Chapter 1

- 1.67 (a) $A = \{4k+3 : k \in \mathbf{Z}\} = \{\dots, -5, -1, 3, 7, 11, \dots\}$
 - (b) $B = \{5k 1 : k \in \mathbf{Z}\} = \{\dots, -6, -1, 4, 9, 14, \dots\}.$
- 1.68 (a) $A = \{x \in S : |x| \ge 1\} = \{x \in S : x \ne 0\}.$
 - (b) $B = \{x \in S : x \le 0\}.$
 - (c) $C = \{x \in S : -5 \le x \le 7\} = \{x \in S : |x 1| \le 6\}.$
 - (d) $D = \{x \in S : x \neq 5\}.$
- 1.69 (a) $\{0, 2, -2\}$ (b) $\{\}$ (c) $\{3, 4, 5\}$ (d) $\{1, 2, 3\}$
 - (e) $\{-2,2\}$ (f) $\{\}$ (g) $\{-3,-2,-1,1,2,3\}$.
- 1.70 (a) |A| = 6 (b) |B| = 0 (c) |C| = 3
 - (d) |D| = 0 (e) |E| = 10 (f) |F| = 20.
- $1.71 \ A \times B = \{(-1,x), (-1,y), (0,x), (0,y), (1,x), (1,y)\}.$
- 1.72 (a) $(A \cup B) (B \cap C) = \{1, 2, 3\} \{3\} = \{1, 2\}.$
 - (b) $\overline{A} = \{3\}.$
 - (c) $\overline{B \cup C} = \overline{\{1, 2, 3\}} = \emptyset$.
 - (d) $A \times B = \{(1,2), (1,3), (2,2), (2,3)\}.$

- 1.73 Let $S = \{\{1\}, \{2\}, \{3,4\}, A\}$ and let $B = \{3,4\}$.
- 1.74 $\mathcal{P}(A) = \{\emptyset, \{1\}\}, \mathcal{P}(C) = \{\emptyset, \{1\}, \{2\}, C\}. \text{ Let } B = \{\emptyset, \{1\}, \{2\}\}.$
- 1.75 Let $A = \{\emptyset\}$ and $B = \mathcal{P}(A) = \{\emptyset, \{\emptyset\}\}.$
- 1.76 Only $B = C = \emptyset$ and D = E.
- 1.77 $U = \{1, 2, 3, 5, 7, 8, 9\}, A = \{1, 2, 5, 7\}$ and $B = \{5, 7, 8\}.$
- 1.78 (a) A_r is the set of all points in the plane lying on the circle $x^2 + y^2 = r^2$. $\bigcup_{r \in I} A_r = \mathbf{R} \times \mathbf{R} \text{ (the plane) and } \bigcap_{r \in I} A_r = \emptyset.$
 - (b) B_r is the set of all points lying on and inside the circle $x^2 + y^2 = r^2$. $\bigcup_{r \in I} B_r = \mathbf{R} \times \mathbf{R}$ and $\bigcap_{r \in I} B_r = \{(0,0)\}.$
 - (c) C_r is the set of all points lying outside the circle $x^2 + y^2 = r^2$. $\bigcup_{r \in I} C_r = \mathbf{R} \times \mathbf{R} - \{(0,0)\} \text{ and } \bigcap_{r \in I} C_r = \emptyset.$
- 1.79 Let $A_1 = \{1, 2, 3, 4\}$, $A_2 = \{3, 5, 6\}$, $A_3 = \{1, 3\}$, $A_4 = \{1, 2, 4, 5, 6\}$. Then $|A_1 \cap A_2| = |A_2 \cap A_3| = |A_3 \cap A_4| = 1$, $|A_1 \cap A_3| = |A_2 \cap A_4| = 2$ and $|A_1 \cap A_4| = 3$.
- 1.80 (a) (i) Give an example of five sets A_i ($1 \le i \le 5$) such that $|A_i \cap A_j| = |i j|$ for every two integers i and j with $1 \le i < j \le 5$.
 - (ii) Determine the minimum positive integer k such that there exist four sets A_i ($1 \le i \le 4$) satisfying the conditions of Exercise 1.79 and $|A_1 \cup A_2 \cup A_3 \cup A_4| = k$.
 - (b) (i) $A_1 = \{1, 2, 3, 4, 7, 8, 9, 10\}$ $A_2 = \{3, 5, 6, 11, 12, 13\}$ $A_3 = \{1, 3, 14, 15\}$ $A_4 = \{1, 2, 4, 5, 6, 16\}$ $A_5 = \{7, 8, 9, 10, 11, 12, 13, 14, 15, 16\}.$
 - (ii) The minimum positive integer k is 5. The example below shows that $k \leq 5$.

Let
$$A_1 = \{1, 2, 3, 4\}, A_2 = \{1, 5\}, A_3 = \{1, 4\}, A_4 = \{1, 2, 3, 5\}.$$

If k=4, then since $|A_1 \cap A_4|=3$, A_1 and A_4 have exactly three elements in common, say 1, 2, 3. So each of A_1 and A_4 is either $\{1,2,3\}$ or $\{1,2,3,4\}$. They cannot both be $\{1,2,3,4\}$. Also, they cannot both be $\{1,2,3\}$ because A_3 would have to contain two of 1, 2, 3 and so $|A_3 \cap A_4| \ge 2$, which is not true. So we can assume that $A_1 = \{1,2,3,4\}$ and $A_4 = \{1,2,3\}$. However, A_2 must contain two of 1, 2, 3 and so $|A_1 \cap A_2| \ge 2$, which is impossible.

- 1.81 (a) |S| = |T| = 10.
 - (b) |S| = |T| = 5.
 - (c) |S| = |T| = 6.
- 1.82 Let $A = \{1, 2, 3, 4\}$, $A_1 = \{1, 2\}$, $A_2 = \{1, 3\}$, $A_3 = \{3, 4\}$. These examples show that $k \le 4$. Since $|A_1 A_3| = |A_3 A_1| = 2$, it follows that A_1 contains two elements not in A_3 , while A_3 contains two elements not in A_1 . Thus $|A| \ge 4$ and so k = 4 is the smallest positive integer with this property.

1.83 (a)
$$S = \{(-3,4), (0,5), (3,4), (4,3)\}.$$

(b)
$$C = \{a \in B : (a,b) \in S\} = \{3,4\}$$

 $D = \{b \in A : (a,b) \in S\} = \{3,4\}$
 $C \times D = \{(3,3),(3,4),(4,3),(4,3)\}.$

$$1.84 \ A = \{1, 2, 3\}, B = \{\{1, 2\}, \{1, 3\}, \{2, 3\}\}, C = \{\{1\}, \{2\}, \{3\}\}.$$

$$D = \mathcal{P}(C) = \{\emptyset, \{\{1\}\}, \{\{2\}\}, \{\{3\}\}, \{\{1\}, \{2\}\}, \{\{1\}, \{3\}\}, \{\{2\}, \{3\}\}, C\}.$$

1.85
$$S = \{x \in \mathbf{R} : x^2 + 2x - 1 = 0\} = \{-1 + \sqrt{2}, -1 - \sqrt{2}\}.$$

 $A_{-1+\sqrt{2}} = \{-1 + \sqrt{2}, \sqrt{2}\}, A_{-1-\sqrt{2}} = \{-1 - \sqrt{2} - \sqrt{2}\}.$

(a)
$$A_s = A_{-1-\sqrt{2}}$$
 and $A_t = A_{-1+\sqrt{2}}$.
 $A_s \times A_t = \{(-1-\sqrt{2}, -1+\sqrt{2}), (-1-\sqrt{2}, \sqrt{2}), (-\sqrt{2}, 1+\sqrt{2}), (-\sqrt{2}, \sqrt{2})\}.$

(b) $C = \{ab : (a,b) \in B\} = \{-1, -\sqrt{2} - 2, \sqrt{2} - 2, -2\}$. The sum of the elements in C is -7.