
PROBLEM 1.1 
 

KNOWN: Thermal conductivity, thickness and temperature difference across a sheet of rigid 
extruded insulation. 
 
FIND: (a) The heat flux through a 2 m × 2 m sheet of the insulation, and (b) The heat rate 
through the sheet. 
 
SCHEMATIC:       
                             
 
 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS: (1) One-dimensional conduction in the x-direction, (2) Steady-state 
conditions, (3) Constant properties. 
 
ANALYSIS: From Equation 1.2 the heat flux is 
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Solving,  
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The heat rate is  
 

 2
x x 2

W
q  = q A = 14.5  × 4 m  = 58 W

m
′′ ⋅       < 

 
COMMENTS: (1) Be sure to keep in mind the important distinction between the heat flux 
(W/m2) and the heat rate (W). (2) The direction of heat flow is from hot to cold. (3) Note that 
a temperature difference may be expressed in kelvins or degrees Celsius. 
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PROBLEM 1.2  
 
 
KNOWN:  Thickness and thermal conductivity of a wall.  Heat flux applied to one face and 
temperatures of both surfaces. 
 
FIND:  Whether steady-state conditions exist. 
 
SCHEMATIC: 

 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) One-dimensional conduction, (2) Constant properties, (3) No internal energy 
generation. 
  
ANALYSIS:   Under steady-state conditions an energy balance on the control volume shown is  
 

2
in out cond 1 2( ) / 12 W/m K(50 C 30 C) / 0.01 m 24,000 W/mq q q k T T L′′ ′′ ′′= = = − = ⋅ ° − ° =  

 

Since the heat flux in at the left face is only 20 W/m2, the conditions are not steady state.  < 
 

 
COMMENTS:  If the same heat flux is maintained until steady-state conditions are reached, the 
steady-state temperature difference across the wall will be  
 

ΔT = 2/ 20 W/m 0.01 m /12 W/m K 0.0167 Kq L k′′ = × ⋅ =  
 
which is much smaller than the specified temperature difference of 20°C.  
 
 

q” = 20 W/m2

L = 10 mm

k = 12 W/m·KT1 = 50°C

T2 = 30°C

q″cond



PROBLEM 1.3 
 
KNOWN:  Inner surface temperature and thermal conductivity of a concrete wall. 
 
FIND:  Heat loss by conduction through the wall as a function of outer surface temperatures ranging from 
-15 to 38°C. 
 
SCHEMATIC: 

  
ASSUMPTIONS:  (1) One-dimensional conduction in the x-direction, (2) Steady-state conditions, (3) 
Constant properties. 
 
ANALYSIS:  From Fourier’s law, if xq′′  and k are each constant it is evident that the gradient, 

xdT dx q k′′= − , is a constant, and hence the temperature distribution is linear.  The heat flux must be 
constant under one-dimensional, steady-state conditions; and k is approximately constant if it depends 
only weakly on temperature.  The heat flux and heat rate when the outside wall temperature is T2 = -15°C 
are 

 
( ) 21 2

x

25 C 15 CdT T T
q k k 1W m K 133.3W m

dx L 0.30 m

− −−′′ = − = = ⋅ =

o o

. (1) 

 2 2
x xq q A 133.3W m 20m 2667 W′′= × = × = . (2) < 

 
Combining Eqs. (1) and (2), the heat rate qx can be determined for the range of outer surface temperature, 
-15 ≤ T2 ≤ 38°C, with different wall thermal conductivities, k. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For the concrete wall, k = 1 W/m⋅K, the heat loss varies linearly from +2667 W to -867 W and is zero 
when the inside and outer surface temperatures are the same.  The magnitude of the heat rate increases 
with increasing thermal conductivity. 
 
COMMENTS:  Without steady-state conditions and constant k, the temperature distribution in a plane 
wall would not be linear. 
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PROBLEM 1.4 
 
KNOWN:  Dimensions, thermal conductivity and surface temperatures of a concrete slab.  Efficiency 
of gas furnace and cost of natural gas. 
 
FIND:  Daily cost of heat loss. 
 
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Steady state, (2) One-dimensional conduction, (3) Constant properties. 
 
ANALYSIS:  The rate of heat loss by conduction through the slab is 
 

 ( ) ( )1 2T T 7 C
q k LW 1.4 W / m K 11m 8m 4312 W

t 0.20 m

− °
= = ⋅ × =    < 

 
The daily cost of natural gas that must be combusted to compensate for the heat loss is 
 

 ( ) ( )g
d 6f

qC 4312 W $0.02 / MJ
C t 24 h / d 3600s / h $8.28/ d

0.9 10 J / MJη
×

= Δ = × =
×

  < 

 
COMMENTS:  The loss could be reduced by installing a floor covering with a layer of insulation 
between it and the concrete. 
 



PROBLEM 1.5 
 
 
KNOWN:  Thermal conductivity and thickness of a wall.  Heat flux through wall.  Steady-state 
conditions. 
 
FIND:  Value of temperature gradient in K/m and in °C/m.  
 
SCHEMATIC:   

L = 20 mm

k = 2.3 W/m·K

q”x = 10 W/m2

x  
 
 
ASSUMPTIONS:  (1) One-dimensional conduction, (2) Constant properties. 
 
ANALYSIS:   Under steady-state conditions, 
 

" 210 W/m
4.35 K/m 4.35 C/m

2.3 W/m K
xdT q

dx k
= − = − = − = − °

⋅
   < 

 
Since the K units here represent a temperature difference, and since the temperature difference is the 
same in K and °C units, the temperature gradient value is the same in either units. 

 
 

COMMENTS:  A negative value of temperature gradient means that temperature is decreasing with 
increasing x, corresponding to a positive heat flux in the x-direction. 
 
 



PROBLEM 1.6 
 
KNOWN:  Heat flux and surface temperatures associated with a wood slab of prescribed 
thickness. 
 
FIND:  Thermal conductivity, k, of the wood. 
 
SCHEMATIC: 

 
 
ASSUMPTIONS:  (1) One-dimensional conduction in the x-direction, (2) Steady-state 
conditions, (3) Constant properties. 
 
ANALYSIS:  Subject to the foregoing assumptions, the thermal conductivity may be 
determined from Fourier’s law, Eq. 1.2.  Rearranging, 
 

 
( )

L W 0.05m
k=q 40  

T T m 40-20 C
x 21 2
′′ =

− o  

 

 k = 0.10 W / m K.⋅          < 
 

COMMENTS:  Note that the °C or K temperature units may be used interchangeably when 
evaluating a temperature difference. 
 
 
 
 
 



PROBLEM 1.7 
 
KNOWN:  Inner and outer surface temperatures of a glass window of prescribed dimensions. 
 
FIND:  Heat loss through window. 
 
SCHEMATIC: 

 
 
ASSUMPTIONS:  (1) One-dimensional conduction in the x-direction, (2) Steady-state 
conditions, (3) Constant properties. 
 
ANALYSIS:  Subject to the foregoing conditions the heat flux may be computed from 
Fourier’s law, Eq. 1.2. 
 

 
( )

T T
q k 

L
15-5 CW
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1 2
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Since the heat flux is uniform over the surface, the heat loss (rate) is 
 

 
q =  qx A

q =  2800 W / m2  3m2

′′ ×

×
 

 q =  8400 W.          < 
 
COMMENTS:  A linear temperature distribution exists in the glass for the prescribed 
conditions. 
 
 



PROBLEM 1.8 
 
KNOWN:  Net power output, average compressor and turbine temperatures, shaft dimensions and 
thermal conductivity. 
 
FIND:  (a) Comparison of the conduction rate through the shaft to the predicted net power output of 
the device, (b) Plot of the ratio of the shaft conduction heat rate to the anticipated net power output of 
the device over the range 0.005 m ≤ L ≤ 1 m and feasibility of a L = 0.005 m device. 
 
SCHEMATIC: 
 

 
 
 
 
 

 
 
 
 
 
 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties, (3) Net power output is 
proportional to the volume of the gas turbine. 
 
PROPERTIES:  Shaft (given): k = 40 W/m⋅K. 
 
ANALYSIS:   (a) The conduction through the shaft may be evaluated using Fourier’s law, yielding 
 

( ) ( )2 3 2( ) 40W/m K(1000 400) C
" / 4 (70 10 m) / 4 92.4W

1m
h c

c
k T T

q q A d
L

π π −− ⋅ − °
= = = × =  

 
The ratio of the conduction heat rate to the net power output is 
 

    6
6

92.4W
18.5 10
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q
r

P
−= = = ×

×
     < 

 
(b) The volume of the turbine is proportional to L3. Designating La = 1 m, da = 70 mm and Pa as the 
shaft length, shaft diameter, and net power output, respectively, in part (a), 
 

d = da × (L/La); P = Pa × (L/La)
3 

 
and the ratio of the conduction heat rate to the net power output is 
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3 2
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2 2
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Continued… 
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PROBLEM 1.8 (Cont.) 
 
 
The ratio of the shaft conduction to net power is shown below. At L = 0.005 m = 5 mm, the shaft 
conduction to net power output ratio is 0.74. The concept of the very small turbine is not feasible since 
it will be unlikely that the large temperature difference between the compressor and turbine can be 

maintained.                               < 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
COMMENTS:  (1) The thermodynamics analysis does not account for heat transfer effects and is 
therefore meaningful only when heat transfer can be safely ignored, as is the case for the shaft in part 
(a). (2) Successful miniaturization of thermal devices is often hindered by heat transfer effects that 
must be overcome with innovative design. 
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PROBLEM 1.9 
 
KNOWN:  Width, height, thickness and thermal conductivity of a single pane window and 
the air space of a double pane window.  Representative winter surface temperatures of single 
pane and air space. 
 
FIND:  Heat loss through single and double pane windows. 
 
SCHEMATIC:   
 

 
 
 
ASSUMPTIONS:  (1) One-dimensional conduction through glass or air, (2) Steady-state 
conditions, (3) Enclosed air of double pane window is stagnant (negligible buoyancy induced 
motion). 
 
ANALYSIS:  From Fourier’s law, the heat losses are 
 

Single Pane: ( )T T 35 C21 2q k A 1.4 W/m K 2m 19,600 Wg g L 0.005m

−
= = ⋅ =

o
 < 

 

Double Pane: ( )T T 25 C21 2q k A 0.024 2m 120 Wa a L 0.010 m

−
= = =

o
   < 

 
COMMENTS:  Losses associated with a single pane are unacceptable and would remain 
excessive, even if the thickness of the glass were doubled to match that of the air space.  The 
principal advantage of the double pane construction resides with the low thermal conductivity 
of air (~ 60 times smaller than that of glass).  For a fixed ambient outside air temperature, use 
of the double pane construction would also increase the surface temperature of the glass 
exposed to the room (inside) air. 
 



PROBLEM 1.10 
 
KNOWN:  Dimensions of freezer compartment.  Inner and outer surface temperatures. 
 
FIND:  Thickness of styrofoam insulation needed to maintain heat load below prescribed 
value. 
 
SCHEMATIC: 

 
 
ASSUMPTIONS:  (1) Perfectly insulated bottom, (2) One-dimensional conduction through 5 

walls of area A = 4m
2
, (3) Steady-state conditions, (4) Constant properties. 

 
ANALYSIS:  Using Fourier’s law, Eq. 1.2, the heat rate is 
 

 q =  q A =  k 
T

L
 A total′′ ⋅

Δ
 

 

Solving for L and recognizing that Atotal = 5×W
2
, find 

 

 L =  
5 k  T W

q

2Δ
 

 

 
( ) ( )5  0.03 W/m K 35 - -10 C 4m

L = 
500 W

2⎡ ⎤× ⋅ ⎣ ⎦
o

 

 

 L =  0.054m =  54mm.         < 
 
COMMENTS:  The corners will cause local departures from one-dimensional conduction 
and a slightly larger heat loss. 
 
 



PROBLEM 1.11 
 
 
KNOWN:  Heat flux at one face and air temperature and convection coefficient at other face of plane 
wall.  Temperature of surface exposed to convection. 
 
FIND:  If steady-state conditions exist. If not, whether the temperature is increasing or decreasing. 
 
SCHEMATIC:   

 
 
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) One-dimensional conduction, (2) No internal energy generation. 
 
ANALYSIS:   Conservation of energy for a control volume around the wall gives 
 

st
in out g

dE
E E E

dt
= − +& & &  

 

[ ]st
in in

2 2 2

( ) ( )

20 W/m 20 W/m K(50 C 30 C) 380 W/m

s s

dE
q A hA T T q h T T A

dt

A A

∞ ∞
′′ ′′= − − = − −

= − ⋅ ° − ° = −⎡ ⎤⎣ ⎦

 

 

Since dEst/dt ≠ 0, the system is not at steady-state.       < 
    

Since dEst/dt < 0, the stored energy is decreasing, therefore the wall temperature is decreasing.       < 
 
 
 
COMMENTS:  When the surface temperature of the face exposed to convection cools to 31°C, qin = 
qout and dEst/dt = 0 and the wall will have reached steady-state conditions. 
 
 
 
 
 
 
 

q” = 20 W/m2

Ts = 50°C

h = 20 W/m2·K
T∞ = 30°C

Air

q”conv



PROBLEM 1.12 
 
KNOWN:  Dimensions and thermal conductivity of food/beverage container.  Inner and outer 
surface temperatures. 
 
FIND:  Heat flux through container wall and total heat load. 
 
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Negligible heat transfer through bottom 
wall, (3) Uniform surface temperatures and one-dimensional conduction through remaining 
walls. 
 
ANALYSIS:  From Fourier’s law, Eq. 1.2, the heat flux is 
 

 
( )0.023 W/m K 20 2 CT T 22 1q k 16.6 W/m

L 0.025 m

⋅ −−′′ = = =
o

    < 

 
Since the flux is uniform over each of the five walls through which heat is transferred, the 
heat load is 
 
 ( )q q A q H 2W 2W W Wtotal 1 2 1 2′′ ′′ ⎡ ⎤= × = + + ×⎣ ⎦  
 

 ( ) ( )2q 16.6 W/m 0.6m 1.6m 1.2m 0.8m 0.6m 35.9 W⎡ ⎤= + + × =⎣ ⎦    < 
 
COMMENTS:  The corners and edges of the container create local departures from one-

dimensional conduction, which increase the heat load.  However, for H, W1, W2 >> L, the 
effect is negligible. 
 



PROBLEM 1.13 
 
KNOWN:  Masonry wall of known thermal conductivity has a heat rate which is 80% of that 
through a composite wall of prescribed thermal conductivity and thickness. 
 
FIND:  Thickness of masonry wall. 
 
SCHEMATIC: 

 
 
ASSUMPTIONS:  (1) Both walls subjected to same surface temperatures, (2) One-
dimensional conduction, (3) Steady-state conditions, (4) Constant properties. 
 
ANALYSIS:  For steady-state conditions, the conduction heat flux through a one-
dimensional wall follows from Fourier’s law, Eq. 1.2, 
 

 ′′q  =  k 
T

L

Δ
 

 
where ΔT represents the difference in surface temperatures.  Since ΔT is the same for both 
walls, it follows that 
 

 L  =  L  
k

k
  

q

q1 2
1

2

2

1

⋅
′′
′′

.  

 
With the heat fluxes related as 
 
 ′′ = ′′q  0.8 q1 2  

 

 L  =  100mm 
0.75 W / m K

0.25 W / m K
  

1

0.8
 =  375mm.1

⋅
⋅

×      < 

 
COMMENTS:  Not knowing the temperature difference across the walls, we cannot find the 
value of the heat rate. 
 



PROBLEM 1.14 
 

KNOWN:  Expression for variable thermal conductivity of a wall.  Constant heat flux.  
Temperature at x = 0. 
  
FIND:  Expression for temperature gradient and temperature distribution. 
 
SCHEMATIC:  
 
 
 
 
 
 
 
 
 
 
 
ASSUMPTIONS:  (1) One-dimensional conduction. 
 
ANALYSIS:  The heat flux is given by Fourier’s law, and is known to be constant, therefore 
 

x

dT
q k constant

dx
′′ = − =  

 
Solving for the temperature gradient and substituting the expression for k yields 
 

x xq qdT

dx k ax b

′′ ′′
= − = −

+
     < 

 
This expression can be integrated to find the temperature distribution, as follows: 
 

xqdT
dx dx

dx ax b

′′
= −

+∫ ∫  

 
Since xq constant′′ = , we can integrate the right hand side to find 

 

( )xq
T ln ax b c

a

′′
= − + +  

 
where c is a constant of integration.  Applying the known condition that T = T1 at x = 0, 
we can solve for c. 

Continued… 
 

 
 

q”

x

k = ax + b

T1



PROBLEM 1.14 (Cont.) 
 
 
 

1

x
1

x
1

T(x 0) T

q
ln b c T

a
q

c T ln b
a

= =
′′

− + =

′′
= +

 

 
 

Therefore, the temperature distribution is given by 
 

( )x x
1

q q
T ln ax b T ln b

a a

′′ ′′
= − + + +     < 

   x
1

q b
T ln

a ax b

′′
= +

+
      < 

 
 
COMMENTS:  Temperature distributions are not linear in many situations, such as when the 
thermal conductivity varies spatially or is a function of temperature. Non-linear temperature 
distributions may also evolve if internal energy generation occurs or non-steady conditions exist.  

 
 
 
 
 



PROBLEM 1.15 
 
KNOWN:  Thickness, diameter and inner surface temperature of bottom of pan used to boil 
water.  Rate of heat transfer to the pan. 
 
FIND:  Outer surface temperature of pan for an aluminum and a copper bottom. 
 
SCHEMATIC:   
 

 
 
ASSUMPTIONS:  (1) One-dimensional, steady-state conduction through bottom of pan. 
 
ANALYSIS:  From Fourier’s law, the rate of heat transfer by conduction through the bottom 
of the pan is 
 

 
T T1 2q kA

L

−
=  

 
Hence, 
 

 
qL

T T1 2 kA
= +  

 

where ( )22 2A D / 4 0.2m / 4 0.0314 m .π π= = =  

 

Aluminum: 
( )

( )
600W 0.005 m

T 110 C 110.40 C1 2240 W/m K 0.0314 m
= + =

⋅

o o   < 

 

Copper: 
( )

( )
600W 0.005 m

T 110 C 110.24 C1 2390 W/m K 0.0314 m
= + =

⋅

o o   < 

 
COMMENTS:  Although the temperature drop across the bottom is slightly larger for 
aluminum (due to its smaller thermal conductivity), it is sufficiently small to be negligible for 
both materials.  To a good approximation, the bottom may be considered isothermal at T ≈ 
110 °C, which is a desirable feature of pots and pans. 
 



PROBLEM 1.16 
 
KNOWN:  Dimensions and thermal conductivity of a chip.  Power dissipated on one surface. 
 
FIND:  Temperature drop across the chip. 
 
SCHEMATIC:   

 
 
ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties, (3) Uniform heat 
dissipation, (4) Negligible heat loss from back and sides, (5) One-dimensional conduction in 
chip. 
 
ANALYSIS:  All of the electrical power dissipated at the back surface of the chip is 
transferred by conduction through the chip.  Hence, from Fourier’s law, 
 

 P =  q =  kA 
T

t

Δ
 

or 
 

 
( )

t P 0.001 m 4 W
T = 

kW 150 W/m K 0.005 m2 2
⋅ ×

Δ =
⋅

 

 

 ΔT =  1.1  C.o           < 
 
COMMENTS:  For fixed P, the temperature drop across the chip decreases with increasing k 
and W, as well as with decreasing t. 



PROBLEM 1.17 
 
KNOWN:  Heat flux and convection heat transfer coefficient for boiling water.  Saturation 
temperature and convection heat transfer coefficient for boiling dielectric fluid. 
 
FIND:  Upper surface temperature of plate when water is boiling. Whether plan for minimizing 
surface temperature by using dielectric fluid will work. 
 
SCHEMATIC:   

Tsat,d = 52°C

q" = 20 × 105 W/m2

Tsat,w = 100°C

hw = 20,000 W/m2·K
hd = 3,000 W/m2·K

 
 
 
ASSUMPTIONS:  Steady-state conditions. 
 
PROPERTIES:  Tsat,w = 100°C at p = 1 atm. 
 
ANALYSIS:   According to the problem statement, Newton’s law of cooling can be expressed for a 
boiling process as 
 

sat( )sq h T T′′ = −  
 

Thus, 
 

sat /sT T q h′′= +  
 

When the fluid is water,  
 

5 2

, sat, 3 2

20 10  W/m
/ 100 C 200 C

20 10  W/m Ks w w wT T q h
×′′= + = ° + = °

× ⋅
    

 
When the dielectric fluid is used, 
 
 

5 2

, sat , 3 2

20 10  W/m
/ 52 C 719 C

3 10  W/m Ks d d dT T q h
×′′= + = ° + = °

× ⋅
    

 

Thus, the technician’s proposed approach will not reduce the surface temperature.  < 
 
COMMENTS:  (1) Even though the dielectric fluid has a lower saturation temperature, this is more 
than offset by the lower heat transfer coefficient associated with the dielectric fluid. The surface 
temperature with the dielectric coolant exceeds the melting temperature of many metals such as 
aluminum and aluminum alloys. (2) Dielectric fluids are, however, employed in applications such as 
immersion cooling of electronic components, where an electrically-conducting fluid such as water 
could not be used. 
 
 



PROBLEM 1.18 
 
KNOWN:  Hand experiencing convection heat transfer with moving air and water. 
 
FIND:  Determine which condition feels colder.  Contrast these results with a heat loss of 30 W/m2 under 
normal room conditions. 
 
SCHEMATIC: 

 
 
ASSUMPTIONS:  (1) Temperature is uniform over the hand’s surface, (2) Convection coefficient is 
uniform over the hand, and (3) Negligible radiation exchange between hand and surroundings in the case 
of air flow. 
 
ANALYSIS:  The hand will feel colder for the condition which results in the larger heat loss.  The heat 
loss can be determined from Newton’s law of cooling, Eq. 1.3a, written as 
 
 ( )sq h T T∞′′ = −  
 
For the air stream: 
 

 ( )2 2
airq 40 W m K 30 5 K 1,400 W m′′ ⎡ ⎤= ⋅ − − =⎣ ⎦  < 

 
For the water stream: 
 

 ( )2 2
waterq 900 W m K 30 10 K 18,000 W m′′ = ⋅ − =  < 

 
COMMENTS:  The heat loss for the hand in the water stream is an order of magnitude larger than when 
in the air stream for the given temperature and convection coefficient conditions.  In contrast, the heat 
loss in a normal room environment is only 30 W/m2 which is a factor of 400 times less than the loss in the 
air stream.  In the room environment, the hand would feel comfortable; in the air and water streams, as 
you probably know from experience, the hand would feel uncomfortably cold since the heat loss is 
excessively high. 


